Fault mirrors in seismically active fault zones: A fossil of small earthquakes at shallow depths

Li-Wei Kuo1, Sheng-Rong Song2, John Suppe2, and En-Chao Yeh3

1Department of Earth Sciences, National Central University, Taoyuan, Taiwan, 2Department of Geosciences, National Taiwan University, Taipei, Taiwan, 3Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan

Abstract Fault mirrors (FMs) are naturally polished and glossy fault slip surfaces that can record seismic deformation at shallow depths. They are important for investigating the processes controlling dynamic fault slip. We characterize FMs in borehole samples from the hanging wall damage zone of the active Hsiaotungshi reverse fault, Taiwan. Here we report the first documented occurrence of the combination of silica gel and melt patches coating FMs, with the silica gel resembling those observed on experimentally formed FMs that were cataclastically generated. In addition, the melt patches, which are unambiguous indicators of coseismic slip, suggest that the natural FMs were produced at seismic rates, presumably resulting from flash heating at asperities on the slip surfaces. Since flash heating is efficient at small slip, we propose that these natural FMs represent fossils of small earthquakes, formed in either coseismic faulting and folding or aftershock deformation in the active Taiwan fold-and-thrust belt.

1. Introduction

A number of physical and chemical mechanisms have been proposed to result in fault lubrication during earthquakes, based on both experimental data and theoretical considerations (e.g., flash heating of asperities, frictional melting, silica gel, nanopowder, and thermal decomposition) and are postulated to occur on natural faults (see Di Toro et al. [2011] and Niemeijer et al. [2012] for a summary). Solidified frictional melts, or pseudotachylytes, have been documented both in nature [e.g., Sibson, 1975; Swanson, 1992; Camacho et al., 1995; Di Toro and Pennacchioni, 2005] and in experiments [Spray, 1987; Tsutsumi and Shimamoto, 1997] and are commonly recognized as fossil earthquakes [Sibson, 1975; Di Toro et al., 2006]. Pseudotachylyte therefore has been used in many settings to infer the seismic nature of fault zones and allows the retrieval of key parameters related to the earthquake source [e.g., Di Toro et al., 2009]. However, with the exception of frictional melting evidence [Allen, 2005; Di Toro et al., 2006], only a few other potential indicators of seismic slip have been observed in nature [Kirkpatrick et al., 2013; Siman-Tov et al., 2013; Smith et al., 2013], which is a severe limitation in our understanding of earthquake physics.

Other proposed geologic evidence for seismic slip includes the combination of carbonate dissociation and fluid-rock interaction [Rowe et al., 2012a], thermally altered biomarkers [Polissar et al., 2011; Savage et al., 2014], thermally altered magnetic minerals [Evans et al., 2014], peculiar crystal-plastic features [Smith et al., 2013], injection of fluidized gouge [Rowe et al., 2012b], and fault mirrors (FMs) [Fondriest et al., 2013; Siman-Tov et al., 2013]. Fault mirrors (FMs) have been shown experimentally to form at seismic rates accompanied with thermal decomposition, nanograin coating and sintering, or recrystallization reaction [Han et al., 2007; Fondriest et al., 2013; Smith et al., 2013; Siman-Tov et al., 2015] and also have been reported from exhumed fault zones both in carbonate and in silicate host rocks [Power and Tullis, 1989; Collettini et al., 2013; Siman-Tov et al., 2013; Fondriest et al., 2015]. The FMs with truncated and exploded grains in carbonate host rock provide criteria for seismic slip [Fondriest et al., 2015], but these in silicate-hosted faults remain largely unknown, and so other evidence and the associated mechanism for seismic slip must be identified.

Here we report about the first documented observations of FMs associated to silica gel and pseudotachylytes in silicate-hosted rocks. The FMs were found in borehole cores retrieved from the hanging wall damage zone of the Hsiaotungshi active reverse fault, Taiwan [Shyu et al., 2005]. In an effort to understand FMs in silicate-hosted faults and the associated process, we examine the mineralogy and the macrostructure and microstructure of the FMs, discuss possible mechanism for the FMs formation, address the geological record of the seismically active fault and fold, and, by extension, other tectonically active regions with incomplete earthquake catalogues.
2. Geological Setting

The mountainous island of Taiwan is developed by arc-continent collision in which the Philippine Sea plate moves northwestward at an average velocity of ~80 mm/yr with respect to Eurasian continent [Yu et al., 1997] (Figure 1a inset). Approximately a third of this convergence is consumed within the complex western Taiwan fold-and-thrust belt where recent large earthquakes such as the 1999 Chi-Chi $M_w = 7.6$ and 1935 Hsinchu-Miaoli $M_{GR} = 7.1$ earthquakes occurred [Le Béon et al., 2014; Shyu et al., 2005] (Figure 1a). The Hsiaotungshi reverse fault lies within the east limb of the Pakuali anticline, which activated the 1935 Hsinchu-Miaoli earthquake (Figure 1b). The host rock of the Hsiaotungshi reverse fault consists of well-consolidated Oligocene-Miocene sedimentary sequences up to 4500 m thick (Figures 1a and 1b).

The drilling site was located in the east of the Hsiaotungshi fault system, and the cores were recovered from the hanging wall damage zone in the shallow marine Talu Shale (Miocene) and Peliao Sandstone (early Miocene) at depths of 500 to 600 m (Figure 1b). Talu Shale mainly consists of very thin bedded shale with evenly dispersed medium to fine-grained mica (Figure 1c). Peliao Sandstone is primarily composed of muddy

Figure 1. (a) Shaded-relief geological map combing time-stratigraphic units showing the fold-and-thrust belt of the Miaoli-Hsinchu area, and the Hsiaotungshi active reverse fault bounded the eastern side of the Miaoli-Hsinchu area. The drill site is located in the hanging wall of the Hsiaotungshi active reverse fault (modified from Chinese Petroleum Corporation, 1974 and 1978). The inset box shows a schematic drawing of tectonic of Taiwan. (b) Cross section of the drilling site showing structural interpretation through the eastern part of the Miaoli-Hsinchu area (after Namson [1981]). The Hsiaotungshi fault zone plotted as the heavy red line, and the black line is the boundary of lithological formations. (c) Photograph of highly reflective surface recognized as FM fault surface and nonmirror surface.
sandstone with a few clean sandstone beds and shale strata. These formations show well-preserved sedimentary features such as bedding-parallel orientation of platy minerals and bioturbation structures, and no diagenetic amorphous materials are reported [Namson, 1981; Ho, 1994]. It is interesting that several fault or joint surfaces, which are generally bedding-parallel, were found. In particular, some surfaces are rough and nonreflective, whereas others are highly reflective, the so-called fault mirrors (FMs) (Figure 1c). The FMs, in general, are widely distributed stratigraphically and were found on many cores, which display well-polished fault surfaces characterized by high visible-light reflectivity with vitreous luster (Figure 1c).

3. Material and Methods
We performed extensive characterization of these FMs and their context, including (1) observed microstructures and composition of both nonmirror surfaces (planar fracture surface; bedding plane of host rocks) and FMs from surface view and cross-section view (petrographic section perpendicular to the FMs) with field emission scanning

Figure 2. Representative microstructures of both nonmirror surface and FMs. (a) Field emission scanning electron microscopy (FE-SEM) image showing roughness and coarse grains on the nonmirror surface. (b) FE-SEM image showing ultrasmooth surface of a FM. (c) Matrix of FMs consists of roughly hexagonal aggregates ranged from <1 to 2 μm in size (indicated with yellow arrows) separated by micrometer-scale, angular pores. (d) Al-type patches are anhedral (indicated with yellow dashed line) and heterogeneously distributed. (e) Atomic force microscopy (AFM) morphology scans of the Si-type patches. Darker colors represent lower regions; brighter colors represent higher regions. The Si-type patches from top three-dimensional view are very flat except for several scratches and few prominent grains and grooves. (f) AFM morphology scans of the Al-type patches from three-dimensional view are very flat and showing wavy morphology.
electron microscopy equipped with an energy dispersive spectrometer at 10 kV (FESEM/EDX), (2) measured roughness and morphology of FMs on nanoscales with atomic force microscopy (AFM), (3) recognized crystallinity of analyzed materials from FMs with transmission electron microscopy (TEM), (4) detected the water content of FMs with micro-Raman spectroscopy, and in particular (5) determined mineral assemblages of host rock and gouge zone with and without FMs by in situ synchrotron X-ray diffraction analyses (see method and condition of in situ synchrotron X-ray diffraction (XRD) in the supporting information) (Figures 2, 3, and 4).

The FMs appear as a hard shield on the fault surface coating thin gouge layers below. We gently separated hard films (FMs) from gouge zone and directly analyzed FMs; however, it seems that part of contribution of the XRD intensity was derived from gouge just next to FMs in the in situ synchrotron XRD analyses (Figure 4).

4. Results
The nonmirror surfaces observed in hand specimen commonly contain a number of tiny visible platy mica and fine sand grains of quartz and feldspar (Figure 1c). Even though the nonmirror surfaces look relatively planar at the centimeter scale, the regularities observed derive from the breakup of grain boundary, roughly parallel or subparallel to the orientation of platy mica. In contrast, the FMs observed in hand specimen overlie...
Figure 4. Characterization of mineral assemblages of both host rocks and FMs. (a) Transmission electron microscopy (TEM) images of the grains collected from the Si-type patches. Selected area electron diffraction pattern (SAED) of the Si-type patches showing some nanograins and glassy matrix. (b) TEM images of the grains collected from the Al-type patches. SAED of the Al-type patches showing no light spots indicating only glassy matrix in this grain. (c) Samples for the analysis of in situ synchrotron XRD analysis are shown in the top left side. The mineral assemblages of host rock are very similar to that of the gouge zone either covered by FMs or without FMs. Comparing the abundance of quartz (red dashed rectangle), the gouge zone covered with fault mirrors is relatively enriched in quartz, which suggests that quartz is the dominant component on fault mirrors. cps, counts per second. (d) Spectra of micro-Raman analyses showing that silica gel and water are presented on FMs.
thin generally bedding-parallel (~10⁻³ to 10⁻² m) gouge layers [cf. Hung and Yang, 1991] and commonly appears as very shiny and hard, sometimes showing corrugations, undulations, and fine grooves (Figure 1c).

At the micrometer scale of surface view, the nonmirror surface shows obvious roughness derived from micrometers to millimeters quartz clasts and feldspar grains (Figure 2a). In contrast, FMs appear to be ultrasmooth with no clear grain boundaries (Figure 2b). FMs are dominantly composed of nanograins and anhedral amorphous patches (Figures 2c and 2d), with very few ferrous minerals and carbonaceous materials (Table 1; supporting information). Sometimes the matrix is composed of tens of micrometer-sized angular to rounded quartz clasts. The chemical composition of the siliceous materials in the matrix can be divided into two types: the silica-rich patches (Si-type patches) that are the main domain of FMs (Figure 2c) and the alumina-rich patches (Al-type patches) (Figure 2d and Table 1). The Si-type patches consist of roughly hexagonal aggregates that range from <1 to 2 μm in size separated by micrometer scale with angular pores and are randomly or weakly oriented (arrowheads in Figure 2c). The Al-type patches commonly appear to be anhedral and are heterogeneously distributed on the FMs (Figure 2d).

Imaging mode atomic force microscopy (AFM) using a sharp-tip probe shows two distinctive domains for the FMs matrix. Most of the Si-type patches commonly are aggregates with diameters of tens to hundreds of nanometers with small-scale striations or grooves (Figure 2e), whereas the Al-type patches display wavy undulations without obvious grain boundary (Figure 2f). At the nanoscale of surface view, the roughness of FMs, computed by root-mean-square (RMS) of roughness [Power and Tullis, 1991], is ~15 nm and 19 nm, respectively, for matrix and melt patches under the wavelength of 550 nm (see measurements of AFM in the supporting information). Therefore, the RMS of FMs is smaller than 100 nm under visible light and the glossy surfaces must obey the Rayleigh roughness criterion [Beckmann and Spizzichino, 1963; Siman-Tov et al., 2013].

At the micrometer scales in cross section view, irregularity is observed along the nonmirror surface (Figure 3a), which is derived from the angular shapes of grains and platy minerals. The orientation of platy minerals such as mica underlining and parallel to the nonmirror surface suggests that the nonmirror surface is parallel to bedding. In contrast, the FM case a thin gouge zone ranging from tens to hundreds of micrometers in thickness usually underlies the FMs (Figure 3b). With respect to the roughness of FMs, the boundary between gouge zone and host rock is irregular (Figure 3b), and several open fractures filled with epoxy parallel to subparallel the boundary separate the thin zone of aligned clay minerals (dark area of the gouge zone in Figure 3b). In particular, the quartz clast along FMs appears to be truncated suggesting the strong shear strain localization during the formation of FMs (the white arrow in Figure 3b). The gouge zone is relatively enriched in clay minerals and contains fewer angular to rounded clasts of quartz and feldspar smaller than the surrounding host rock. A stacked sheet of overlapping clay minerals and micrometer-sized quartz grains are observed along the FMs trace, whereas the Si-type patches are not observed along FMs. This was presumably resulted from mechanical erosion during sample preparation. In order to understand the spatial occurrence of the Si-type patches on FMs, we carved the FMs with a pin and observed the man-made cliff on a tilted sample stage of 30° with scanning electron microscopy (SEM) (Figure 3c). It seems that the Si-type patches are dominantly composed of nanograins that were smeared on the FMs.

<p>| Table 1. Average Cation Compositions of Minerals on FMs Determined by FESEM-EDS (Unit in wt %) |</p>
<table>
<thead>
<tr>
<th>Phases</th>
<th>Ferrous Minerals</th>
<th>Carbonaceous Materials</th>
<th>Clay Minerals</th>
<th>Si-type Patches</th>
<th>Al-type Patches</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>24</td>
<td>9</td>
<td>16</td>
<td>20</td>
<td>34</td>
</tr>
<tr>
<td>Mg</td>
<td>3.7</td>
<td>0</td>
<td>1.7</td>
<td>0</td>
<td>1.9</td>
</tr>
<tr>
<td>Si</td>
<td>5.9</td>
<td>7.6</td>
<td>50.0</td>
<td>90.3</td>
<td>50.8</td>
</tr>
<tr>
<td>Ca</td>
<td>2.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mn</td>
<td>4.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fe</td>
<td>47.2</td>
<td>2.3</td>
<td>4.2</td>
<td>4.3</td>
<td>12.7</td>
</tr>
<tr>
<td>Al</td>
<td>0.8</td>
<td>5</td>
<td>28.5</td>
<td>4.3</td>
<td>19.1</td>
</tr>
<tr>
<td>K</td>
<td>0</td>
<td>0.2</td>
<td>15.0</td>
<td>0.5</td>
<td>15.5</td>
</tr>
<tr>
<td>Ti</td>
<td>0</td>
<td>1.2</td>
<td>0.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>35.3</td>
<td>83.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Na</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sum</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Geophysical Research Letters 10.1002/2015GL066882

KUO ET AL. FAULT MIRRORS FROM SMALL EARTHQUAKES
TEM analyses suggest that (1) the Si-type patches are primarily composed of both well-structured quartz nanograins and amorphous materials and (2) the Al-type patches do not have crystal lattice and are amorphous (Figures 4a and 4b). The results of in situ synchrotron X-ray analysis show that the mineral assemblages of host rock, gouge zone with and without FMs are composed mainly of quartz, feldspar, illite, chlorite, kaolinite, siderite, magnetite, and pyrite (Figure 4c). It is notable that the intensity of quartz peak in the sample of gouge zone with FMs is the highest among the analyzed samples. The synchrotron XRD results suggest that the quartz that is more abundant in FMs and is also in good agreement with our observation by FESEM/EDX (Figure 2b). Both the scarceness of the amorphous patches and relatively low intensity of the amorphous peak contribute to the difficulty of their being recognized in the XRD patterns. The 100–4000 cm\(^{-1}\) region of Raman spectrum, which includes the first-order bands of silica gel, suggests that the Si-type patches on FMs are gel origin amorphous patches (Figure 4d), based on comparison with the spectra of the commercial standards including quartz, silica gel, and water. In addition, it seems that the Si-type amorphous patches are hydrous on the basis of the similarity of the region from 3000 cm\(^{-1}\) to 4000 cm\(^{-1}\) of Raman spectra between FMs and water, although the main peak location of the Si-type patches is different from the one for water, presumably resulting from the different types of hydroxide. In general, the mineralogy of FMs is identical to the host rock, except the presence of the Si-type patches that include amorphous materials and micrometer-sized quartz grains, and the presence of amorphous Al-type patches.

5. Discussion and Conclusion

The occurrence of mirror fault surfaces, cutting parallel to a regional fault surface, within fault gouges, suggests that they are fault related and thus termed FMs (Figure 1). Rock friction experiments on carbonate rocks indicate and gouge that mirror-like surfaces can be developed at both subseismic rates (0.1–10 \(\mu\)m/s) [Verberne et al., 2013, 2014] and seismic rates (0.07–0.1 m/s) [Fondriest et al., 2013; Siman-Tov et al., 2015]. In addition, multiple mechanisms for the formation of glossy surfaces, such as reorientation of grains (Power and Tullis), alignment and preferred orientation of clay minerals [Will and Wilson 1989; Laurich et al., 2014], development of gels [Kirkpatrick et al., 2013], and formation of nanoparticles [De Paola, 2013], have been proposed. It seems that mirror-like surfaces are not necessarily formed at fast fault slip. However, the presence of truncated quartz clasts along our FMs was presumably associated to strong shear strain localization (Figure 3b), which suggests they were formed at fast coseismic slip rates, as was previously documented in both experimentally deformed and natural dolomitic gouges [Fondriest et al., 2013, 2015]. Therefore, the FMs in this study are reminiscent of tribofilms obtained in industrial and rock friction experiments in which sintering has occurred during high velocity slip (Figure 3d) [Adachi and Kato, 2000; Hirose et al., 2012].

The studied FMs are hard glossy surfaces that separate gouge zones and are mainly composed of the Si-type and the Al-type amorphous patches (Figure 3d). On the basis of our results, observations that Si-type patches are hydrous (Figure 4d) and amorphous (Figures 4a and 4c), we interpret them as hydrated amorphous silica gel. Multiple natural origins of hydrated amorphous silica gel have been suggested: (1) by comminution and hydrolyzation during cataclasis [Di Toro et al., 2004]; (2) by precipitation of a hydrothermal fluid [Power and Tullis, 1989]; and (3) by on-fault reactions concurrent with slip [Herrington and Wilkinson, 1993], and thus, the determination of the origin of frictional silica gel products in faults remains challenging. Four lines of evidence suggest that the silica gel in the studied FMs was generated by the cataclastic mechanism: (1) the deformation structures on FMs (slickensides and aligned overlapping clay minerals in thin section) are in kinematic agreement with fault slip; (2) because silica gel must form from hydration during frictional wear [Di Toro et al., 2011], the silica gel and micrometer-sized quartz mixing within the FMs suggest the FMs formed in the presence of fluids during cataclastic deformation; (3) the mineralogy of FMs is identical to that of the host rock with no evidence for the incoming of foreign fluids; and (4) there are no known magmatic rocks, hydrothermal deposits, and biogenic opal associated with the rock units in the area, and silica gel seems unlikely to be derived from magmatic and biogenic origins [Ho, 1994]. Finally, the hydrated amorphous silica gel and micrometer-sized quartz grains documented here most closely resemble the products of the rock friction experiments, suggesting a cataclastic origin.

Rock friction experiments demonstrated that silica gel forms in silica-rich rocks at moderate to high slip rates by frictional wear at ambient air humidity [Hayashi and Tsutsumi, 2010; Nakamura et al., 2012]. Silica must amorphize and hydrate to form gel, and cataclasis during the rock friction experiments has been suggested...
to facilitate hydrolysis and amorphization by generating reactive quartz surfaces for silica gel formation [Di Toro et al., 2011; Di Toro et al., 2004; Goldsby and Tullis, 2002]. Silica amorphization is also observed under static pressure [25–35 GPa; Hemley et al., 1988] and at a variety of applied stresses, bulk displacement rates, and temperatures [Yund et al., 1990; Pec et al., 2012]. Given the range of slip rates, and conditions at which it may be formed, the specific conditions for the formation of silica gel of our observed FMs are still uncertain, even if hydrated amorphous silica gel were shown to be formed frictionally. However, the shear-weakening rheology documented by the silica gel forming experiments indicate that regardless of the mode of formation, silica gel on fault surfaces are likely to have significant slip-weakening effects [Goldsby and Tullis, 2002; Di Toro et al., 2004]. Further microphysical models constrained by rock deformation experiments on silica gel are required to decipher plausible fault slip behaviors on the studied FMs.

There are two possible origins for the Al-type amorphous materials: either extremely fine comminution of crystalline particles or melting. Compared with the observation of extremely comminution by Yund et al. [1990], we strongly favor the second interpretation for the reasons that are (1) the amorphous patches have anhedral boundaries and there appears to be sharp boundary between amorphous patches and silica gel, instead of being continuum by extreme comminution, (2) the amorphous patches seem somewhat nonporous as indicated by extreme comminution, and (3) the amorphous patches are rare (less than a few percent) and heterogeneously distributed on FMs, instead of being abundant (up to 50 %) in the matrix on localized “Y” surface defined by Logan et al. [1979]. The chemical analysis using the SEM-EDX reveals that the composition of the Al-type amorphous patches is similar to those of the mixture of clay minerals (e.g., illite, chlorite, and kaolinite). The AFM image of the Al-type patches shows wavy undulations, suggesting a melt origin (Figure 2f). Besides which, the previous study shows no clear evidence of amorphous materials in the studied formation (Talu Shale and Peliao sandstone) (Figure 2b) [Ho, 1994]. Consequently, it seems that the Al-type amorphous patches on FMs are the product of frictional melt presumably derived from surrounding clay minerals.

Integrated observation of natural and simulated fault products suggests that frictional melting of clayey gouge can occur during seismic slip [Kuo et al., 2009; Han et al., 2014]. Han et al. [2014] observed that melt patches were generated locally in the marginal area of the gouge zone and suggested flash heating [e.g., Rice, 2006] as the mechanism forming melt patches. Flash heating and weakening has also been demonstrated to explain large reduction of shear strength on silicate-hosted rocks [Goldsby and Tullis, 2011]. In particular, flash heating occurring at very short displacement during seismic slip is expected to dominate the strength of the fault for relatively small slip in small earthquakes and in the initial slip stages of large earthquakes [Goldsby and Tullis, 2011; Han et al., 2014]. For the cases of frictional melting of fault gouge, continued slip (or large displacement) may increase bulk and flash temperature within gouge zone, leading to the connection of melt patches and, consequently, formation of a melt layer [Han et al., 2014]. Given the evidences of (1) heterogeneous distribution of the melt patches on FMs (Figures 2d and 3d), (2) no obvious vesicles on FMs or within the gouge zone (Figures 2b and 3b), and (3) no apparent mineral anomaly (Figure 4c), it suggests that the melt patches on observed FMs were generated at high temperature of asperities in short slips rather than being produced at high bulk temperature of fault zones with large slip, as was documented in the case in the nearby Chi-Chi earthquake $M_W = 7.6$ [e.g., > 900°C; Kuo et al., 2011].

We link those main features of FMs with associated bedding-parallel gouge layers from the hanging wall damage zone of the Hsiaotungshi active reverse system: they are a smooth, glossy film (Figure 1c) that is composed of silica gel, micrometer-sized quartz, and melt patches resulted from small fast slip (Figures 2 and 3). On the basis of their stratigraphic and structural setting [Namson, 1981], we suggest that these small faults were active shallower than ~4 km. We could not constrain the displacement of observed FMs since the core is only a pin point along the whole fault surfaces. Similar bedding-parallel approximately millimeter-scale gouge zones are observed to extend for more than 5 m in outcrops of the adjacent Chuhuangkeng anticline [Hung and Yang, 1991]; however, we are unable to observe the size of the FM patches within the gouge layers. It seems that the entire bedding fault slips in single earthquake, but FMs are just a development at local patches of currently unknown size in any earthquake. We simply assume that displacement of few millimeters to centimeters occurred for generating melt patches as suggested by rock friction experiments [Goldsby and Tullis, 2011]. The estimated slip from the observation of FMs is also in good agreement with our field observation by the fact that accommodated slip along FMs, parallel to bedding surfaces which are the limbs of an anticline fold and found no clear evidence of mesoscale fold disruption, should be small [Hung and Yang, 1991]. Seismological
scaling relationships indicate that these fault rocks could be the product of small earthquakes (\(< M_0\)) with few millimeters of slip and slip durations of tens to hundreds of milliseconds [Wells and Coppersmith, 1994; Boettcher et al., 2009; Kwiatek et al., 2011]. It seems likely that the occurrence of the FMs represent a fossil of small earthquakes as the consequence of accommodated coseismic faulting and folding, in particular coseismic flexural slip, or aforesaid deformation in the active western Taiwan fold-and-thrust belt [Le Béon et al., 2014; Shyu et al., 2005].

We conclude that (1) FMs were characterized as an ultrasmooth surface composed of silica gel, micrometer-sized quartz grains, and melt patches; (2) FMs were formed at fast fault slips; (3) silica gel was generated by a cataclastic process; (4) the melt patches were produced by flash heating at asperities; and (5) the occurrence of FMs in our case represent fossil of small earthquakes as the consequence of accommodated coseismic faulting and folding or aforesaid deformation in the active western Taiwan fold-and-thrust belt. We envision that the presence of FMs can be a widespread phenomenon along natural faults [Power and Tullis, 1989; Fondriest et al., 2013; Siman-Tov et al., 2013; Kuo et al., 2014; Evans et al., 2014]. Since our results indicate that FMs may represent a fossil of ancient small earthquakes, the occurrence of FMs can be used to assess seismic hazard in tectonically active regions, especially those with incomplete earthquake catalogues.

Acknowledgments
We thank the reviewer De Paola, two anonymous reviewers, and Editor Andrew V. Newman for their positive and constructive comments. We also thank Jiann-Neng Fang, Dr. Yu-Ting Kuo, and Hsiu-Ching Hsiao for their laboratory support. We thank Hwo-Shuenn Sheu for the technical support for our in situ synchrotron XRD analysis work. All microstructural observation used in this study are available by contacting the corresponding author L.-W. Kuo (liweikuo@ncu.edu.tw). This work was supported by Ministry of Science and Technology (MOST 104-2116-M-008-026 to L.-W. Kuo and MOST 103-2116-M-008-014 to S.-R. Song), National Taiwan University (104R104051 to J. Suppe), and National Natural Science Foundation of China (41330211).

References
Allen, J. L. (2005), A multi-kilometer pseudotachylite system as an exhumed record of earthquake rupture geometry at hypocentral depth (Colorado, USA), Tectonophysics, 402, 37–54.
Herrington, R. J., and J. J. Wilkinson (1993), Colloidal gold and silica in mesothermal vein systems, Geology, 21, 539–542.

KUO ET AL.

FAULT MIRRORS FROM SMALL EARTHQUAKES
Kuo, L.-W., S.-R. Song, L. Huang, E.-C. Yeh, and H.-F. Chen (2011), Temperature estimates of coseismic heating in clay-rich fault gouges, the Chelungpu fault zones, Taiwan, Tectonophysics, 502, 315–327.
Kuo, L.-W., et al. (2014), Gouge graphitization and dynamic fault weakening during the 2008 Mw 7.9 Wenchuan earthquake, Geology, 42, 47–50.