Single-crystal elasticity of the rhodochrosite at high pressure by Brillouin scattering spectroscopy

Chaoshuai Zhao, Heping Li, Pofei Chen, Jianjun Jiang & Wen Liang

To cite this article: Chaoshuai Zhao, Heping Li, Pofei Chen, Jianjun Jiang & Wen Liang (2018): Single-crystal elasticity of the rhodochrosite at high pressure by Brillouin scattering spectroscopy, High Pressure Research

To link to this article: https://doi.org/10.1080/08957959.2018.1497624

Published online: 13 Jul 2018.
Single-crystal elasticity of the rhodochrosite at high pressure by Brillouin scattering spectroscopy

Chaoshuai Zhao\textsuperscript{a,b}, Heping Li\textsuperscript{a}, Pofei Chen\textsuperscript{c}, Jianjun Jiang\textsuperscript{a} and Wen Liang\textsuperscript{a}

\textsuperscript{a}Key Laboratory of High-temperature and High pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, People’s Republic of China; \textsuperscript{b}College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China; \textsuperscript{c}Department of Earth Sciences, National Central University, Taoyuan, Taiwan

ABSTRACT

The sound velocity properties of single-crystal rhodochrosite (MnCO\textsubscript{3}) were determined up to 9.7 GPa at ambient temperature by Brillouin scattering spectroscopy. Six elastic constants were calculated by a genetic algorithm method using the Christoffel’s equations at each pressure. The elastic constants increased linearly as a function of pressure and its pressure derivatives $\frac{\partial C_{ij}}{\partial P}$ for $C_{11}$, $C_{33}$, $C_{44}$, $C_{12}$, $C_{13}$, $C_{14}$ were 5.86 (±0.36), 3.82 (±0.44), 2.06 (±0.39), 5.07 (±0.27), 5.34 (±0.44), 1.52 (±0.24), respectively. Based on the derived elastic constants of rhodochrosite, the aggregate adiabatic bulk and shear moduli ($K_s$ and $G$) were calculated using the Voigt-Reuss-Hill averages and the linear fitting coefficients ($\frac{\partial K_s}{\partial P}$)\textsubscript{T} and ($\frac{\partial G}{\partial P}$)\textsubscript{T} were 5.05(±0.26) and 0.73 (±0.05), respectively. The aggregate $V_p$ of rhodochrosite increased clearly as a function of pressure and its pressure derivative $\frac{\partial V_p}{\partial P}$ was 7.99(±0.53) $\times 10^{-2}$ km/(s GPa), while the aggregate $V_s$ increased slowly and $\frac{\partial V_s}{\partial P}$ was only 1.19(±0.12) $\times 10^{-2}$ km/(s GPa). The anisotropy factor for $A_s$ of rhodochrosite increased from ∼40% at 0.8 GPa to ∼48% at 9.7 GPa, while $A_p$ decreased from ∼19% to ∼16% at the corresponding pressure.

1. Introduction

Carbonates play an important role in the transport and storage of carbon in the Earth’s interior [1,2]. The most important carbonate minerals belonging to the calcite group, include calcite (CaCO\textsubscript{3}), magnesite (MgCO\textsubscript{3}), rhodochrosite (MnCO\textsubscript{3}), siderite (FeCO\textsubscript{3}) [3]. Calcite, magnesite, and siderite are widely studied as the most important carbon carriers of carbonates in the crust and mantle [4–6]. Rhodochrosite is reported as a potential carbon-bearing phase for transporting the carbon into the Earth’s deep interior [7]. It appears most commonly in hydrothermal ore districts [3] and its high pressure phase is stable to lower mantle conditions [7,8]. In addition, Mn\textsuperscript{2+} has a cation size close to Mg\textsuperscript{2+} and Fe\textsuperscript{2+}, which could make rhodochrosite a potential model compound for understanding the difference in the high pressure behaviors of magnesite and siderite [9]. However, the study of rhodochrosite is mainly concentrated on the vibration and compressibility
properties previously [7,8], its sound velocities and elastic properties are little reported and limited at 1 GPa and ambient temperature [10,11]. Therefore, we investigated the high pressure velocity of rhodochrosite up to 9.7 GPa at ambient temperature by Brillouin scattering here.

2. Experiments

Natural samples of rhodochrosite were obtained from Guizhou, China. The composition was measured by electron microprobe analyses (JXA-8230, 15 kV and 10 nA, Northwest University, China), which indicated a homogeneous chemical composition of MnCO₃ with a minor Fe, Ca and Mg and its composition was \((\text{Mn}_{0.976}\text{Fe}_{0.011}\text{Ca}_{0.003}\text{Mg}_{0.001})\text{CO}_3\). For simplification, we referred it to MnCO₃ thereafter. The single-crystal samples were cleaved using a tungsten needle along the rhombohedral cleavage parallel to (101) plane. Optically transparent, surfaces with a parallelism better than 30’ single-crystal samples were chosen for preparation, then an appropriate size of the single-crystal sample was carefully cut and loaded into a diamond anvil cell (DAC) with a tungsten needle for Brillouin scattering measurement. When an incident white light was upon the sample, it produced a wedge interference pattern between the sample lower surface and the lower diamond upper surface. The parallelism was checked by microscope through observing the interference stripe and the situation with many interference stripes was discarded. The parallelism \(\alpha\) between the sample and diamond surfaces is defined as follows:

\[
\alpha \approx \frac{180\lambda}{2nd\pi} (^{\circ})
\]

where \(\lambda\) is the wavelength of incident light (~535 nm for green light), \(n\) is the refractive index of the pressure transmitting medium (~1.3), \(d\) is the distance between the adjacent interference stripes (~25 \(\mu\)m). Based on the calculation of the Equation (1), we obtained that the value of \(\alpha\) was ~0.5°.

High pressure was generated by a cell with two opposed diamonds with 400 \(\mu\)m culets. The initial thickness of rhenium gasket was pre-indent to ~70 \(\mu\)m. A 4:1 volume ratio of methanol and ethanol mixture was applied as the pressure transmitting medium. Ruby powders and a single-crystal chip of rhodochrosite were placed in a ~150 \(\mu\)m sample chamber. The sample size was 77 \(\mu\)m \(\times\) 62 \(\mu\)m \(\times\) 40 \(\mu\)m. The pressure was determined by the quasi-hydrostatic ruby scale [12]. In this study, the uncertainty of pressure ranged over ±0.1~0.2 GPa, which was estimated from a difference between the pressure measured before and after the collection of the Brillouin spectrum.

The diagram of the experimental setup was similar to Zha et al. [13]. The main component of the Brillouin scattering system consisted of a diode-pumped laser with a wavelength of 532 nm (Verdi G2, Coherent Company), a Sandercock-type six-pass tandem Fabry–Perot interferometer (TFP2, JRS Scientific Instruments) and a spectrum collection system. More detailed information about the component can be seen from Murakami et al. [14]. In this measurement system, a DAC mounted on the multi-axial stage (Edmund Optics, Newport and Parker Company) with \(XYZ\alpha\) was placed on the corner with 120° angle optical path system. The sample chamber was observed through an Olympus microscope with a 20× ultra-length working distance objective along the laser
exit orientation. A symmetric 60° scattering geometry was adopted in all experiments. This geometry was calibrated before experiments by using BK7 glass and H₂O [15,16]. The incident laser power was 150 mW. A 300 μm incident pinhole at the front of the interferometer and a 450 μm exit pinhole at the front of CCD signal collection system were used to collect the sample signal. Before each experiment, we calibrated the spectrum range of Brillouin scattering.

In the symmetric scattering geometry, the acoustic velocity, proportional to the Brillouin frequency shift, was calculated as follows [17]:

\[ V_i = \frac{\Delta \omega_i \lambda}{2 \sin (\theta/2)}, \]

where \( V_i \) is the velocity of an acoustic wave (subscript \( i \) stands for the longitudinal or transversal mode), \( \Delta \omega_i \) is the frequency shift of scattered light and \( \lambda \) (532 nm) is the wavelength of the incident light, \( \theta \) (60°) is the angle between incident and scattered orientation.

3. Results and discussion

Brillouin scattering spectra of single-crystal rhodochrosite were determined up to 9.7 GPa at ambient temperature in a 1–2 GPa pressure interval. The spectra were collected in the (101) plane in 19 different crystallographic directions at 10 degree interval for each pressure. The intensity of \( V_p \) and \( V_s \) varied with the change of different crystallographic directions. A representative Brillouin spectrum of MnCO₃ at 8.6 GPa and 300 K was shown in Figure 1. At the pressure below 3.1 GPa, some transverse velocities \( V_s \) were not detected due to the sample signal overlapping with the pressure transmitting medium at some crystallographic directions. At 7.3 GPa, the signal of pressure transmitting medium was not detected, which was good for collecting better sample signals. It should be noted that rhodochrosite has a property of birefringence. The extraordinary ray does

![Figure 1. Representative Brillouin spectrum of single-crystal rhodochrosite at 8.6 GPa and 300 K.](image-url)
not follow Snell’s law and the velocity of this orientation cannot be calculated by the Equation (1) [18]. However, the difference in frequency shift between ordinary and extraordinary rays is estimated to be 2% or less [10], which is almost less than or equal to the resolution of the Brillouin scattering system. Therefore, for simplification, the effect of the extraordinary ray to the velocity of rhodochrosite is neglected in this study.

The representative $V_p$ and $V_s$ velocities of single-crystal rhodochrosite as a function of the azimuthal angle at 8.6 GPa and 300 K were shown in Figure 2. The change of $V_p$ and $V_s$ as a function of the azimuthal angle was clearly observed, which indicated strong elastic anisotropies of the sample at high pressure. The phenomenon is well in agreement with the result of rhodochrosite at ambient temperature and ambient pressure [10]. Some other carbonates, such as magnesite and magnesiosiderite ((Fe$_{0.65}$Mg$_{0.35}$)CO$_3$), also show the similar results before the phase transition [19,20], which are different from aragonite-type of strontianite (SrCO$_3$) and aragonite (CaCO$_3$) [21,22]. The similar change of velocities as a function of the azimuthal angle for rhodochrosite, magnesite, and magnesiosiderite is likely due to them belonging to the same calcite group and having the similar characteristics.

Based on the 19 sets of $V_p$, $V_{s1}$ and, $V_{s2}$ at each pressure, the six elastic constants of rhodochrosite were calculated by a genetic algorithm method using the Christoffel’s equations with initial densities from an equation of state of rhodochrosite [23,24]. The method has been successfully applied to invert the elastic constants of Zn(2-methylimidazolate)$_2$ (zeolitic imidazolate framework), magnesite, and dolomite [23,25]. In addition, the elastic constants of the rhodochrosite at ambient conditions were recalculated based on the velocities and density previously reported [10]. Compared with the results calculated by this method and references reported, the errors for most elastic constants are within $\sim$1% except that $C_{13}$ and $C_{33}$ are $\sim$3%, which further proves the reliability of this method.

![Figure 2](image-url). $V_p$ and $V_s$ velocities of single-crystal rhodochrosite as a function of the azimuthal angle at 8.6 GPa and 300 K.
The uncertainty for each elastic constant was estimated by calculating the variations of the misfit as a function of the specific $C_{ij}$, more detailed information could be seen from Chen et al. [23]. The maximum errors of the elastic constants for $C_{11}$, $C_{33}$, $C_{44}$, $C_{12}$, $C_{13}$, $C_{14}$ are 0.9%, 4.1%, 3.1%, 2.7%, 3.4% and 6.1% respectively within whole pressure range based on the results from this study. These errors should be related to density and sound velocity. On the one hand, due to the shortage of in situ single-crystal X-ray diffraction data of the sample in this study, the density is calculated by the equation of state of previous study, which should lead to a little difference between the calculated density and real one, further leading to a little calculation error of the elastic constants. On the other hand, parallelism, birefringence and pressure transmitting medium all affect the accuracy of the sound velocity, which further affects the accurate calculation of the elastic constants. Firstly, the error of sound velocity caused by parallelism comes from two parts, one is between the sample lower surface and the lower diamond upper surface, and the other is between the sample upper and lower surfaces. Both cases imply that the parallelism of 0.5° results in 0.4% velocity error according to the calculation equations from reference reported by Zha et al. (see the case 1 and case 2 in the reference’s appendix) [13]. Therefore, the velocity error is $\leq 0.8\%$ for angles errors $\leq 1°$. Secondly, the effect of birefringence can bring about $\leq 2\%$ error of the sound velocity. Thirdly, at pressure below 3.1 GPa, the sample signals overlapping with pressure transmitting medium at some crystallographic directions can give rise to the uncertainty of the sound velocity.

The representative elastic constants of rhodochrosite as a function of pressure were shown in Figure 3 and Table 1. Each of the elastic constants increased almost linearly as a function of pressure and the pressure derivatives of the elastic constants $\partial C_{ij}/\partial P$ for $C_{11}$, $C_{33}$, $C_{44}$, $C_{12}$, $C_{13}$, $C_{14}$ were 5.86 (±0.36), 3.82 (±0.44), 2.06 (±0.39), 5.07 (±0.27), 5.34 (±0.44), 1.52 (±0.24), respectively. The derived elastic constants at ambient conditions are in agreement with previous results within experimental errors [10]. The cationic radius exhibits the relationship as follows: $r(Mn^{2+}) > r(Fe^{2+}) > r(Mg^{2+})$, for the same calcite-type divalent metal carbonates $MCO_3$ ($M = Mg^{2+}$, $Fe^{2+}$, $Mn^{2+}$), in general, the larger the cationic radius, the weaker the interatomic interactions potential, which can lead to a series of change of the mineral, such as structural, elastic, velocities, and thermodynamic properties, etc. [26]. Compared with the elastic constants of rhodochrosite and magnesite at high pressure and ambient temperature, the three diagonal elastic constants $C_{11}$, $C_{33}$, $C_{44}$ of the former are all less than the latter [20]. It can be explained as a weakening of the longitudinal elastic coefficients due to the weakening of interatomic interactions potential of the rhodochrosite, which is also proved by other carbonates like calcite, strontianite and aragonite at ambient conditions [10,21]. The relationship is not suitable for siderite no matter at ambient conditions or high pressure, which can be explained as a crystal field stabilization of $Fe^{2+}$ [27].

Using the derived elastic constants of rhodochrosite, the aggregate adiabatic bulk and shear moduli ($K_0$ and $G_0$) were calculated by the Voigt-Reuss-Hill averages [28] and the linear fitting coefficients ($\partial K_0/\partial P)_T$ and ($\partial G_0/\partial P)_T$ were 5.05 (±0.26) and 0.73 (±0.05), respectively (see Figure 4). The derived bulk and shear moduli ($K_0$ and $G_0$) at ambient conditions are 108.5 (±1.8) and 50.6 (±0.3) GPa respectively, which is in agreement with previous results [10]. Based on the aggregate adiabatic bulk and shear moduli, the aggregate $V_p$...
Figure 3. Elastic constants of rhodochrosite as a function of pressure at ambient temperature.

Table 1. Representative elastic properties of rhodochrosite at high pressure and ambient temperature.

<table>
<thead>
<tr>
<th>P  (GPa)</th>
<th>5.1 (±0.2)</th>
<th>6.1 (±0.2)</th>
<th>7.3 (±0.1)</th>
<th>8.6 (±0.2)</th>
<th>9.7 (±0.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_{11}$ (GPa)</td>
<td>265.6 (±1.5)</td>
<td>271.1 (±1.5)</td>
<td>279.3 (±2.5)</td>
<td>288.0 (±2.5)</td>
<td>291.4 (±1.5)</td>
</tr>
<tr>
<td>$C_{33}$ (GPa)</td>
<td>139.8 (±4.0)</td>
<td>145.9 (±3.0)</td>
<td>157.2 (±4.5)</td>
<td>152.6 (±5.5)</td>
<td>158.9 (±6.5)</td>
</tr>
<tr>
<td>$C_{44}$ (GPa)</td>
<td>50.6 (±1.5)</td>
<td>54.4 (±1.5)</td>
<td>54.2 (±1.5)</td>
<td>56.9 (±1.5)</td>
<td>61.5 (±1.5)</td>
</tr>
<tr>
<td>$C_{12}$ (GPa)</td>
<td>119.1 (±2.5)</td>
<td>131.1 (±2.5)</td>
<td>130.2 (±3.5)</td>
<td>135.6 (±3.5)</td>
<td>143.0 (±3.0)</td>
</tr>
<tr>
<td>$C_{13}$ (GPa)</td>
<td>92.2 (±2.5)</td>
<td>99.6 (±1.5)</td>
<td>106.6 (±2.5)</td>
<td>110.2 (±3.5)</td>
<td>118.3 (±4.0)</td>
</tr>
<tr>
<td>$C_{14}$ (GPa)</td>
<td>23.0 (±0.5)</td>
<td>23.4 (±0.5)</td>
<td>24.7 (±1.5)</td>
<td>27.1 (±1.5)</td>
<td>30.0 (±1.5)</td>
</tr>
<tr>
<td>$K_r$ (GPa)</td>
<td>133.2 (±2.3)</td>
<td>140.6 (±1.9)</td>
<td>147.9 (±3.0)</td>
<td>150.1 (±3.5)</td>
<td>157.0 (±3.7)</td>
</tr>
<tr>
<td>G (GPa)</td>
<td>54.4 (±2.0)</td>
<td>55.0 (±2.0)</td>
<td>56.3 (±2.8)</td>
<td>57.0 (±3.0)</td>
<td>57.2 (±2.9)</td>
</tr>
<tr>
<td>$V_p$ (km/s)</td>
<td>7.31 (±0.09)</td>
<td>7.42 (±0.08)</td>
<td>7.55 (±0.11)</td>
<td>7.56 (±0.13)</td>
<td>7.67 (±0.12)</td>
</tr>
<tr>
<td>$V_s$ (km/s)</td>
<td>3.76 (±0.02)</td>
<td>3.77 (±0.02)</td>
<td>3.79 (±0.03)</td>
<td>3.80 (±0.03)</td>
<td>3.80 (±0.02)</td>
</tr>
<tr>
<td>$A_p$ (%)</td>
<td>17.8</td>
<td>18.5</td>
<td>18.3</td>
<td>18.0</td>
<td>16.2</td>
</tr>
<tr>
<td>$A_{max}$ (%)</td>
<td>44.8</td>
<td>43.3</td>
<td>46.6</td>
<td>48.4</td>
<td>47.8</td>
</tr>
</tbody>
</table>
and $V_s$ of rhodochrosite were calculated by the following equations:

$$V_p = \sqrt{\frac{K_s + (4/3)G}{\rho}}, \quad (3)$$

$$V_s = \sqrt{\frac{G}{\rho}}, \quad (4)$$

The aggregate $V_p$ of rhodochrosite increased clearly and linearly as a function of pressure and its pressure derivatives $\partial V_p/\partial P$ was $7.99(\pm 0.53) \times 10^{-2}$ km/(s·GPa), while the aggregate
$V_s$ of rhodochrosite increased slowly and $\partial V_s/\partial P$ was only $1.19(\pm0.12) \times 10^{-2}$ km/(s·GPa) (see Figure 5).

The derived anisotropy factors for $A_p$ ($V_p$) and $A_s$ ($V_s$) of the rhodochrosite were exhibited at Figure 6. The anisotropy factor for $A_p$ ($V_p$) is defined as:

$$A_p = 2 \times (V_{p,\text{max}} - V_{p,\text{min}})/(V_{p,\text{max}} + V_{p,\text{min}}) \times 100\%,$$

where $V_{p,\text{max}}$ and $V_{p,\text{min}}$ represent the maximum and minimum compressional wave velocities of the mineral, respectively.

The anisotropy factor for $A_s$ ($V_s$) is defined as:

$$A_s = (V_{s2} - V_{s1})/V_s \times 100\%,$$

where $V_{s1}$ and $V_{s2}$ represent the two orthogonally polarized $S$ wave velocities of the mineral, respectively; $V_s$ is aggregate transverse velocity. The results showed that the maximum value for $A_s$ ($A_{s,\max}$) of rhodochrosite increased from $\sim40\%$ at 0.8 GPa to $\sim48\%$ at 9.7 GPa, while $A_p$ decreased from $\sim19\%$ to $\sim16\%$ at the corresponding pressure, the errors of $A_p$ and $A_{s,\max}$ were $\sim0.5\%$ and $\sim0.9\%$ respectively. The results are abnormal compared with other calcite-type carbonates, whose $A_p$ and $A_s$ are both increased as a function of pressure [6,19,20]. The situations of $A_p$ decreasing and $A_s$ increasing as a function of pressure are also reported in some other minerals, such as orthopyroxene and clinopyroxene [20].

Magnesite is considered as the most important carbon carrier of carbonates in the mantle and its existence is also proved by the occurrence of inclusions in natural diamonds from the deep mantle [29]. Along with magnesite, high pressure phase of rhodochrosite is also proved to be stable at lower mantle pressure condition [8] and considered as a potential carbon carrier in the deep carbon cycle [7]. However, the amount of rhodochrosite is far less than magnesite in the Earth’s interior. Magnesite is considered as the major carbon carrier of carbonates in the deep mantle. The contribution of its velocity to the peridotite or eclogite model is within the uncertainty of sound velocity and can be neglected from a

Figure 6. The anisotropy factors for $V_p$ and $V_s$ of rhodochrosite as a function of pressure at ambient temperature.
mineral physics prospective \[2,20\]. Therefore, it is reasonable to consider that the contribution of rhodochrosite to the velocities of peridotite or eclogite model can be neglected. Nevertheless, the anisotropy factor \(A_{\text{s,max}}\) of MnCO\(_3\) (~40–48% anisotropy) is much larger than that of (Mg,Fe)CO\(_3\) and other major upper mantle minerals, which may be as a potential feature to detect the carbonated region in the Earth’s interior \[2,20\].

4. Conclusion

The sound velocity properties of single-crystal rhodochrosite were determined at high pressure and ambient temperature by Brillouin scattering. Relevant elastic properties were firstly derived and exhibited. The anisotropy factor of rhodochrosite for the maximum of transverse wave anisotropy \(A_{\text{s,max}}\) increases and the longitudinal wave anisotropy \(A_p\) decreases as a function of pressure, which differs from other calcite-type carbonates. These characteristics improve the knowledge of the calcite-type carbonates.

Acknowledgments

We appreciated the anonymous reviewer for her/his valuable comments and suggestions, which greatly helped to improve the manuscript. We acknowledged Changsheng Zha for the guidance and advice on the experiment.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by Major State Research Development Program of China under [grant number 2016YFC0601101] and Strategic Priority Research Program (B) of the Chinese Academy of Sciences under [grant number XDB18010401].

References


