Majors With The Highest Earnings

Some majors have virtually no unemployment, including Geological and Geophysical Engineering, Military Technologies, Pharmacology, and School Student Counseling.

http://www9.georgetown.edu/grad/gppi /hpi/cew/pdfs/whatsitworthcomplete.pdf

Seismic tomography and interferometry: from shallow to deep

Fan-Chi Lin

Seismological Laboratory Caltech*

> September 17, 2013 NCU

Acknowledgments

- Michael Ritzwoller (CU Boulder)
- Victor Tsai (Caltech)
- Rob Clayton (Caltech)
- Dunzhu Li (Caltech)
- Brandon Schmandt (UNM)

Seismic interferometry

$$\int u_1(t)u_2(t+\tau) dt = C(\tau)$$

Ambient noise virtual source

15-30s bandpass filtered

Ambient noise virtual source

15-30s bandpass filtered

Ambient noise virtual source

15-30s bandpass filtered

Global seismicity

Seismic station distribution

http://www.iris.edu/

Seismic waves

http://web.utah.edu/thorne

http://web.utah.edu/thorne/animations.html

Ambient noise tomography

US Topography

Mt. St. Helens, Washington

Yellowstone, Wyoming

 $\bar{3}0s$ 10s

New directions

ShallowDeep

Shallow

High H/V ratio

Low H/V ratio

H/V ratio maps

30 sec Rayleigh wave

60 sec Rayleigh wave

Rayleigh wave ellipticity based on ambient noise

For each station, apply same temporal and spectrum normalization on vertical and horizontal component noise records to keep the amplitude ratio information.

Multi-component ambient noise cross-correlations

H/V ratio

H/V ratio maps

8-sec Rayleigh wave

Depth Sensitivity

H/V ratio vs. phase velocity

H/V ratio

Phase velocity

30-sec Rayleigh wave

Phase velocity & H/V ratio joint inversion

Phase velocity & H/V ratio joint inversion

Phase velocity & H/V ratio joint inversion

Upper 3 km crustal model

Deep

Stacked USArray cross-correlations

 Process all records from Jan 2007 to May 2011 with standard ambient noise processing (Bensen et al. 2007)

- Stack all cross correlations into 50-km distance bins
 - 10,000 traces per stack

Observation of body waves

Why does it work?Examine temporal variability

Distances between 1000 and 1050 km. Bandpassed between 20 and 50 sec period.

Why does it work? Examine temporal variability

• Correlation with occurrence of $M_w > 6.3$ eqs.

Sub-Array

Lateral variation

Does it work elsewhere?

New Zealand national seismic network (42 stations)

PASSCAL and other arrays

P'P'df

PASSCAL and other arrays

Global stack

Boue et al., GJI, 2013

Focusing of P waves at the antipode

Rial & Cormier, 1980

Antipodal station pairs

Ambient noise crosscorrelations

Lin et al., 2013

BBSR-NWAO crosscorrelation

Lin et al., 2013

Single earthquake

Lin et al., 2013

Coda cross-correlations

Conclusions

- Seismic interferometry now can provide constraints to earth structure from shallow to deep.
- A high resolution 3D model of the upper crust can be constructed by combining Rayleigh wave phase velocity and ellipticity measurements.
- New applications based on deep propagating body waves extracted through coda interferometry are emerging.
- Collaboration, student, and postdoc opportunities are available at University of Utah!

Questions?

Salt Lake City, UT

The University of Utah

For more information about Utah, please contact Professor Chang. (張午龍教授-room S209, ext 65615)

Utah