Borehole strain observations in eastern Taiwan

Ya-Ju Hsu¹, Alexandre Canitano¹, Alan Linde², and Selwyn Sacks²

1. Institute of Earth Sciences, Academia Sinica, Taiwan

2. Department of Terrestrial Magnetism, Carnegie Institution of

Washington, USA

Outlines

- Borehole strain data processing
- Strain responses to environmental disturbances
- Relations between precipitation-induced strain and tectonic-origin motions
- Borehole strain recorded during the 2013 $\rm M_w$ 6.2 Ruisui, Taiwan EQ
- Precursory strain and earthquake nucleation

Borehole strainmeter array

121°

Seismicity and fault coupling on the Longitudinal Valley fault

(Chung et al., 2008)

(Thomas et al., 2014)

Sacks-Evertson borehole strainmeter

Installation

3-component

in collaboration with the DTM, Carnegie institution of Washington

Dilatometer **3-component** Single Component Transducer sub-system **Expansive grout** Expansion Space Reservoir (R) Expansion Space DT2 Reservoir (R) Dilatometer Bellows (B2) DT2 Valve (V2) Bellows (B2) DT1 Valve (V2) Bellows (B1) DT1 Bellows (B1) Valve (V1) 3 sets Valve (V1) Attaches to oil-Oil filled filled sensing unit Solid filler Sensing Volume Cross-section sensing sub-system 3m Resilient Steel Stainless Steel Cylinder 7 cm

Sensitivities of borehole strainmeter

Characteristic Event Time (seconds)

Borehole strainmeter data

Data processing

$$s(t) = a_0 + a_1 e^{-t/\lambda_1} + a_2 e^{-t/\lambda_2} + a_3 t$$

- s(t) : strainmeter data
- a_0 : constant

 $a_1 e^{-t/\lambda_1}$: strain changes associated with the $a_2 e^{-t/\lambda_2}$: hole relaxation and grout curing

 $a_3 t$: linear trend

$$\frac{ds(t)}{dt} = -\frac{a_1}{\lambda_1} e^{-t/\lambda_{11}} - \frac{a_2}{\lambda_2} e^{-t/\lambda_{12}} + a_3$$

(Hsu et al., 2015)

Table 2. Optimal Values for Parameters in Equation (1), λ_1 and λ_2 , Are the Relaxation Time of Two Exponential Terms; a_1 and a_2 Are Amplitudes of Two Exponential Terms; a_3 Is the Amplitude of Long-Term Linear Trend

Site	λ_1 (day)	λ ₂ (day)	a ₁ (strain)	a ₂ (strain)	a ₃ (strain/yr)
CHMB	365	1460	-3.4E-6	-3.0E-4	-3.2E-6
HGSB	110	620	-1.9E-5	-4.3E-5	-2.0E-6
ZANB	73	256	-2.1E-7	-1.7E-5	-1.4E-6
SSNB	110	840	-8.7E-6	-3.7E-5	-1.9E-6

Strainmeter calibration and tidal responses

SPOTL (Agnew, 1996)

Estimate strains of M2 and O1 tides produced by the solid Earth tides and the ocean loading

M2/01 (Period:12.4206/25.8194 hour)

Baytap08 (Tamura and Agnew, 2008)

- Using a Bayesian modeling procedure to analyze time series that contain both tidal and other variations
- Estimate tide and air pressure responses to strain data

Table 3.	Results of Tic	dal Analyses	for Three	Sacks-Evertso	n Dilatome	te	rs (SES-1) and	One Three	-Component	Borehole Strainmet	er (SES-3)	
Site	M2_amp (nε, SPOTL)	M2_amp (count)	M2/O1 (SPOTL)	M2/O1 (observed)	M2 Phase (SPOTL)		M2 Phase (observed)	O1 Phase (SPOTL)	O1 Phase (observed)	M2 Admittance (strain/count)	O1 Admittance (strain/count)	BPRC ^a (nɛ/hPa)
CHMB HGSB ZANB SSNB-dil SSNB-y ₁	12.1 12.9 11.9 13.1 18.0	2758 1505 1657 14162 10999	3.3 3.3 3.3 3.3 9.3	3.8 ± 0.1 4.4 ± 0.3 3.2 ± 0.1 5.1 ± 0.6 5.7 ± 0.7	9.6 9.1 9.3 8.7 30.6		$7.9 \pm 0.2 \\8.2 \pm 0.5 \\8.1 \pm 0.4 \\5.4 \pm 0.1 \\20.5 \pm 0.5$	18.0 15.8 19.0 15.5 – 32.5	-7.0 ± 0.9 -10.8 ± 3.3 8.3 ± 1.4 -18.9 ± 0.9 -78.2 ± 0.8	$4.4E-12 \pm 1.3E-14$ $8.5E-12 \pm 7.3E-14$ $7.2E-12 \pm 4.8E-14$ $9.2E-13 \pm 1.9E-15$ $1.6E-12 \pm 2.6E-14$	$5.0E-12 \pm 7.5E-14$ $1.1E-11 \pm 6.2E-13$ $7.0E-12 \pm 1.7E-13$ $1.4E-12 \pm 3.8E-14$ $1.0E-12 \pm 1.3E-14$	$\begin{array}{c} -0.9\pm 0.2 \\ -3.2\pm 0.5 \\ -2.8\pm 0.2 \\ -2.8\pm 0.1 \\ -0.1\pm 0.1 \end{array}$
SSNB- γ_2	12.6	3133	2.0	19.1 ± 0.7	-143.1		-138.5 ± 0.3	71.8	-67.3 ± 7.7	$4.0E-12 \pm 2.0E-14$	3.8E-11 ± 1.2E-13	-1.3 ± 0.3

^aBarometric pressure response coefficient (BPRC)

Strainmeter calibration using long-period surface waves

20070113 Kuril island EQ (M_w 8.1), Distance = 3901 km

20080512 Sichuan Wenchuan EQ (M_w 7.9), Distance = 1921 km

 Peak-to-peak Counts : 11975:11835:14879:105420

 Waveform admittance : 1.00 : 1.01 : 0.80 : 0.11

 Tidal admittance : 1.00 : 1.18 : 0.61 : 0.13

The strainmeter response to barometric pressure

-1~-4 (nanostrain/hPa=nε/hPa)

The strainmeter response to ground water variations

nanostrain

State-Space Model

$$S_n^o = S_n^c + P_n + E_n + R_n + \varepsilon_n$$

raw de-trend

$$\varepsilon_n \sim N(0, \sigma^2), \qquad n = 1, \dots, N$$

Response of barometric pressure

Response of the Earth tides

$$R_n = \sum_{i=1}^k C_i R_{n-i} + \sum_{i=1}^k d_i r_{n-i}$$
 Response of rainfall

Decompose data with a state-space model

HGSB-13001196 300 trend O 200 rainfall TT I 202 water table \times 30 100 corrected strain õ 0 \bigcirc 200 100 . strain (nanostrain) 00 00 00 00 00 00 Pressure induced strain rainfall response rain 9 100 Rainfall induced strain 0 -100 Tidal induced strain 40 ىشلال بى يىنىلان ، بىللىن ، بىلىلىن ، بىلىك 20 0 -20 20 40 60 80 100 120 140 160 180 200 0 Day of 2013

Barometric pressure: -1~-3 nε/hPa; GW: -0.3~-1.0 nε/hPa; Rainfall: -5.1 nε/hPa

Effect of pore-fluid flow on a dilatometer response

Figure 1. Thought experiment to illustrate the effect of pore-fluid flow on a dilatometer response. A block of fluid saturated rock with a cylindrical hole is compressed. With the external displacements fixed the fluid is allowed to drain. As the fluid drains the rock contracts and the hole expands.

Uniaxial-stress

$$\varepsilon_{zz} = \frac{1}{E} (\sigma_{zz} - \nu (\sigma_{xx} + \sigma_{yy}))$$
$$\varepsilon_{zz} = \frac{1}{E} \sigma_{zz} = \frac{\sigma_{zz}}{2G(1 + \nu)}$$

E and *G* are Young's modulus and shear modulus, v is Poisson's ratio v=0.25 and *G*=30 GPa, the resulting vertical strain is $\varepsilon_{zz} = 1.3 \times 10^{-11} \text{ Pa}^{-1}$ $\varepsilon_a = -2v \ \varepsilon_{zz}$; $\varepsilon_{vol} = (1 - 2v) \ \varepsilon_{zz}$

-0.7 *nε*/hPa

Volumetric strain resulted from per meter of water level change (=9.8 × 10³Pa) v=0.25, porosity (φ) =0.2, and *G*=30 GPa

-13 $n\varepsilon/1$ -m water level change

Uniaxial strain

$$\sigma_{zz} = \frac{E}{(1+\nu)(1-2\nu)} \Big[(1-\nu)\varepsilon_{zz} + (\varepsilon_{xx} + \varepsilon_{yy}) \Big]$$

$$\varepsilon_{zz} = \frac{\sigma_{zz} (1 - 2\nu)}{2G(1 - \nu)}$$

v=0.25 and *G*=30 GPa

$$\varepsilon_{zz} = \varepsilon_{vol} = 1.1 \times 10^{-11} \text{ Pa}^{-11}$$

-1.1 *nε/*hPa

v=0.25, porosity (φ) =0.2, and *G*=30 GPa -22 *n* ε /1-m water level change

Strain responses to environmental factors

	Observed	Theoretical
Barometric pressure	-1~-3 <i>nε/</i> hPa	-0.7~ -1.1 <i>nε/</i> hPa (ν=0.25, <i>G</i> =30 GPa)
Ground water table	-30~-100 <i>nε</i> /1m - <mark>0.3~-1.0 <i>nε</i>/hPa</mark>	-13~-22 <i>nε/</i> 1m (ν=0.25, <i>G</i> =30 GPa, Φ=0.2)
Precipitation	-50 <i>nε</i> /100 mm (-5.1 <i>nε</i> /hPa)	

Relations between rainfall-induced strain, rainfall, and air pressure

Relations between residual strain, rainfall, and air pressure

2004 Namadol Typhoon

(Hsu et al., 2015)

Day of 2004

2005 Haitang Typhoon

2009 Morakot Typhoon

AP= 35 hPa

2013/10/31 M_w 6.2 Ruisui, Taiwan earthquake

$2013/10/31 M_w 6.2$ Ruisui earthquake

121°30'

GPS

Model

50 100

Coseismic slip

20 mn

121°00'

35

30

Data prior to the Ruisui earthquake

Strainmeter data prior to the Ruisui earthquake

29

Estimated slip, maximal nucleation moment, and maximal length of nucleation zone

S(1) GPS / S(2) Strainmeter $M = \mu 10^{-4} L^3$ (Johnston and Linde, 2002)

	HGSB	SSNB	CHMB	ZANB	
Standard deviation σ_{ϵ} (n ϵ)	10^{-1}	$5x10^{-2}$	10^{-2}	$2x10^{-2}$	
(S1) Maximal moment (N.m) (Slip, in m)	$3.6 \mathrm{x} 10^{14}$	$3x10^{14}$	4.8×10^{13}	2.4×10^{14}	
Maximal slip (in m)	$12x10^{-3}$	$10x10^{-3}$	$1.6 \mathrm{x} 10^{-3}$	$8x10^{-3}$	
Maximal nucleation length (m)	490	465	250	430	
(S2) Maximal moment (N.m) (Slip, in m)	4.5×10^{14}	$3.3 \mathrm{x} 10^{14}$	8.1×10^{13}	$3x10^{14}$	
Maximal moment (N.m)	$15 x 10^{-3}$	$11 x 10^{-3}$	$2.7 \mathrm{x} 10^{-3}$	$10x10^{-3}$	
Maximal nucleation length (m)	530	480	300	465	
(Canitano et al., 2015)					

Detection of cracking levels during the crack propagation

Sensor for acoustic emissions

- 1. crack closure
- 2. linear elastic deformation
- 3. micro-crack initiation
- 4. micro-crack growth
- 5. micro-crack coalescence
- 6. macro-crack growth
- 7. macro-crack coalescence
- 8. failure

(Moradian Z et al., 2015)

Summary – (1)

- The rises/drops of barometric pressure and ground water table result in contractional/extensional strain.
- Comparisons between the observed volumetric strain response to barometric pressure and groundwater table variations are in good agreement with theoretical predictions.

	Observed	Theoretical
Barometric pressure	-1~-3 <i>nε/</i> hPa	-0.7~ -1.1 <i>nε/</i> hPa (ν=0.25, <i>G</i> =30 GPa)
Ground water table	-30~-100 <i>nε</i> /1m -0.3~-1.0 <i>nε</i> /hPa	-13~-22 <i>nε/</i> 1m (ν=0.25, <i>G</i> =30 GPa, Φ=0.2)
Precipitation	-50 <i>nε</i> /100 mm (-5.1 <i>nε</i> /hPa)	

Summary – (2)

- The majority of strain changes attributed to slow earthquakes seem rater to be related to environmental disturbances.
- Strain polarity changes during passages of typhoons and significant residual strain after correcting environmental factors that may suggest influences from tectonic-origin motions.
- Analysis of 10 seconds data prior to the Ruisui mainshock indicates no pre-seismic strain change emergent from the instrumental noise level (from 10^{-2} to $10^{-1} n\varepsilon$).
- This observation sets limits on any precursory change in a nucleation area, taken to have dimensions of about 250-300 m ($\sim 10^{14}$ N-m), seconds before the mainshock.

Thank you for your attention

Calibration for 3-component strainmeter

$$\begin{bmatrix} \frac{g_1}{C} DT1_a \\ \frac{g_2}{C} DT1_b \\ \frac{g_3}{C} DT1_c \end{bmatrix} = \begin{bmatrix} 0.5 & \frac{D}{C} 0.5 \cos(2\theta_a) & \frac{D}{C} 0.5 \sin(2\theta_a) \\ 0.5 & \frac{D}{C} 0.5 \cos(2\theta_b) & \frac{D}{C} 0.5 \sin(2\theta_b) \\ 0.5 & \frac{D}{C} 0.5 \cos(2\theta_c) & \frac{D}{C} 0.5 \sin(2\theta_c) \end{bmatrix} \begin{bmatrix} \varepsilon_v \\ \gamma_1 \\ \gamma_2 \end{bmatrix} \qquad \begin{bmatrix} \varepsilon_v = \varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz} \\ \gamma_1 = \varepsilon_{xx} - \varepsilon_{yy} \\ \gamma_2 = 2\varepsilon_{xy} \end{bmatrix}$$

The gauge weights $(g_{1\sim3})$ are (-1, -0.9481, -0.9411 measured in Lab)

$$\frac{1}{C}g_i\varepsilon = 0.5\left(1 - \frac{D}{C}\right)\varepsilon_{xx} + 0.5\left(1 - \frac{D}{C}\right)\varepsilon_{yy} + \frac{D}{C}\varepsilon_{xx}\cos^2\theta + 2\frac{D}{C}\varepsilon_{xy}\sin\theta\cos\theta + \frac{D}{C}\varepsilon_{yy}\sin^2\theta$$

1/C, D/C, and the azimuth of DT1 are solved