

活動斷層近地表變形特性研究

林銘郎1、李崇正2、黃文正2、黃文昭3、詹佩臻1、粘為東1、林燕慧4、陳盈璇4、盧詩丁4

¹國立台灣大學土木工程系²國立中央大學土木工程系 ³國立中央大學應用地質所⁴經濟部中央地質調查所

日期:102/10/04(五)

報告大綱

1. 前言

2. 斷層型態及野外影響範圍

3. 室內試驗及數值分析
 4. 斷層退縮考量
 5. 結論
 物理模型實驗
 物理模型實驗
 出對

♥ 前言-台灣活動斷層分布圖-人口密集都會 🥤

□ 1999 M 7.5 Chi Chi (Taiwan) Earthquake, Taiwan □ 土層調適變形(上盤變形較大)、人工建物

□ 1954 M 7.0 Fairview Peak Earthquake, USA □ 上層調適變形(上盤變形較大)、人工建物

□ 1992 M 7.3 Landers Earthquake,USA □ 地表變形帶

- □ 斷層尖端位置?
- □ 斷層形式?
- □ 斷層面傾斜角度?
- 土體的強度與變 形特性?
- 土體內應力、應
 變的空間分布?三
 角形的剪切變形
 帶

□對不同結構物之 診響?

豐原市-中正公園附近-破裂前緣

(Kelson et al. 2001)

30公尺 大平市廍子橋南側-廍子坑路-橫移/逆衝斷裂

(黃文正等人,2000)

- □ 上覆土層地層剖面中的變形型態是如何形成?
- 主要影響因素為何?--斷層尖端圓潤化,解決銳角尖端之數值 問題

- □ 大變形,多次變形,多條集中變形帶
- □ 三角形剪切變形帶與集中剪切變形帶

(詹佩臻, 2011)

黃文正於上下盤分別取相對應土層之樣本並進行實驗,上盤取得樣本 編號為:

2003-05(直剪試驗)(上圖左邊位置) (竹山溝-黃文正教授提供) 2004.7.17-01(一般物性)(上圖右邊下方) 2004.7.17-02(一般物性)(上圖右邊上方)

- 上盤資訊較為完整:有鑽探(試驗)資料,南北牆剖面資料,以及剖面上土樣試驗資料,因此以上盤資訊作為土層資料及簡化來源
- □ 上盤土層:分為兩層

地層深	描述	現地單位重	C	ϕ	E	n	備註
度 (m)		(kN/m ³)	(kN/m^2)	(度)	(kN/m^2)		
0~2	黄棕色軟弱 至中等強度 粉土及黏土	20	20	27	5960 ~ 11500 kPa	0.49 (*)	(*):假設不 排水狀況
2~25	灰黑色卵礫 石層	22(*)	0(*)	45	120000 (*)	0.4	(*):無樣本 為推估值

□山腳斷層沿線鑽孔剖面
 探討

	鑽探	基盤		鑽探	基盤
名稱	深度	深度	名稱	深度	深度
	(m)	(m)		(m)	(m)
WK-1E	760	679	BF-1	275	254
BH-10	75	5.8	BF-2	105	64.5
B-45	40	35.4	BF-3	200	18.95
B-46	39	35.5	BF-4	200	144
B-47	30	25	SCF-1	60	45.1
B-48	27	22.6	SCF-2	165	164
B-49	30	22.58	SCF-5	181	122
B-50	30	17.4	SCF-6	400	222
B-51	35	9	SCF-14	200	158
B-52	30	11.5	SCF-15	80	52
B-53	30	7.1	SCF-16	160	137
			SCF-17	240	214

121°32'30"E 121°37'30"E 310000 315000 廣山 北 唐樂溪 花 平 ⊕ 北埔井 (1.4 mm/yr) 蓮 原 花蓮港 慈濟大學井⊕ (0 mm/yr) 明義井⊕ (-1.1 mm/yr) 花蓮七星潭民房內隆起40公分 releasing band?? 花蓮溪 1 km 》 出居線 → 土地変位 2方向 (林啟文,2009)

20

米崙斷層為1951年花蓮地震的造 震斷層,左移為主兼具逆衝分量, 由七星潭海岸向南延伸至美崙山 西南侧,長約8公里。

2m 西南

水平錯移2公尺

♥ 花崗山槽溝

2012年挖掘了兩處古地震槽溝,從槽溝剖面的地層分析,認為M1層沉積之後,地層產生褶 皺變形;O層(660-<300 yr BP)在二號槽溝北牆呈現變形,垂直變形量至少80公分,應在 沉積之後受到斷層活動影響;但是一號槽溝中卻呈現水平狀態,推測近期的變形帶可能發生 在一號槽溝剖面的東側,未挖掘到。 2號槽溝北牆 (陳文山等人,2012)

- 針對車籠埔斷層沿線型態差異,分別於現地觀察斷層活動 對地表影響範圍,及地表建物對斷層剪出帶的影響。
- 為提供數值簡化模擬參考,進行竹山槽溝土層分布型態討論。

鄰近房舍災損	位移型態	結構物距離	破壞型態	因應方式
1(中正公園)	逆衝	1公尺	傾斜	扶正
2(中正公園)	逆衝	1公尺	倒塌	拆毀
3(一江橋)	逆衝	10公尺	傾斜	扶正
4(健行路)	逆衝	1公尺	傾斜	扶正
5(廍子坑路)	横移/逆衝	1公尺	倒塌	拆毀

- 東部的幾條橫移斷層,包括米崙斷層、嵿頂斷層、瑞穗斷層及池上斷層等,其深部可能為相連的斷層帶,亦即分隔 菲律賓海板塊和歐亞板塊的縫合構造(suture),而在地表 的這些斷層跡,應為簡單剪力(simple shear)作用搭配聚合 (convergence)的效應下,所產生的花狀構造(flower structures)。
- 1951年發生花蓮地震,地震(米侖)斷層的地表錯動量,左 移達2公尺,垂直抬升量達1.2公尺。
- 目前各種方法所推測之歸納,米崙斷層面呈高角度東傾, 傾角50-70度之間。

試驗箱空箱 (正面)

26

試驗箱內部L型升降推版

壓克力觀景窗

● 歷來(100~102)完成之離心機實驗條件(1/2)

27	試驗 編號	覆土層相對密度 (Dr) %	覆土層厚度 [*] (cm)	抬升或陷落高度 [#] (cm)
	1gRtest1	40	20	5.0
	1gRtest2	40	10	5.0
	1gRtest3	70	10	5.0
	1gRtest4	70	20	5.0
	10gRtest5	70	20 (2m)	3.8 (0.38 m)
	10gRtest6	70	20 (2m)	5.0 (0.50 m)
	10gRtest7	70	20 (2m)	1.30 (0.13 m)
	10gRtest8	70	20 (2m)	3.5 (0.35 m)
	40gRtest9	70	20 (8m)	5.0 (2.0 m)
	80gRtest10	70	20 (16m)	5.0 (4.0 m)
	40gRtest11	70	20 (8m)	5.0 (2.0 m)
	80gRtest12	70	20 (16m)	5.0 (4.0 m)
	80gRtest13	70	20 (16m)	3 (2.4 m)
	1gRtest14	70	20	5.0
	80gRtest15	70	20 (16 m)	5.0 (4.0 m)
	1gRest16	70	20	3.5
	40gRtest17	70	20 (8m)	5.0 (2.0 m)
	1gNtest18	85	20	5.0
	1gRtest20	70	20	5.0
	40gRtest21	70	20 (8m)	5.0 (2.0 m)
	80gRtest22	70	20 (16 m)	5.0 (4.0 m)
	80gRtest23	70	20 (16 m)	5.0 (4.0 m)
	80gNtest24	70	20 (16 m)	5.0 (4.0 m)
	80gNtest25	70	20 (16 m)	5.0 (4.0 m)
	40gNtest26	70	20 (8 m)	5.0 (2.0 m)
	80gNtest27	50	20 (16 m)	5.0 (4.0 m)
	80gNtest28	70	20 (16 m)	5.0 (4.0 m)
	80gNtest29	70	20 (16 m)	5.0 (4.0 m)
	40gNtest30	70	20 (8 m)	5.0 (2.0 m)
-	1gNtest31	70	20	5
2	40gNtest32-C	Clay	22 (8.8 m)	5.0 (2.0 m)
	1gNtest33	70	20	5.0
1	1gNtest34	70	20	5.0

試驗編號	覆土層性質 (Dr) % or 覆土層厚度* (su kPa) (cm)		地層抬升或陷落高度 [#] (cm)	
80gNtest35-F-A	70 %	20 (16 m)	1.75 (1.4 m)	
50gNtest36-C	Clay (37 kPa)	22 (17.6 m)	5.0 (2.5 m)	
80gNtest37-C	Clay (46 kPa)	22 (17.6 m)	5.0 (4.0 m)	
80gRtest38-C	Clay (46 kPa)	22 (17.6 m)	5.0 (4.0 m)	
80gRtest39-F-B	70 %	20 (16 m)	5.0 (4.0 m)	
80gRtest41-F-B	70 %	20 (16 m)	5.0 (4.0 m)	
80gRtest43	70 %	10 (8m)	5.0 (4.0m)	
80gNtest44-C	Clay (115 kPa)	22 (17.6m)	5.0 (4.0m)	
80gRtest46-C	Clay (108 kPa)	22 (17.6m)	5.0 (4.0m)	
80gRtest47-F-C	70 %	20 (16m)	5.0 (4.0m)	
80gRtest50	50 %	20 (16m)	5.0 (4.0m)	
80gRtest52-F-B	70	20 (16m)	5.0 (4.0m)	
40gRtest57-F-D	70	20 (8m)	5.0 (2.0m)	
80gNtest58-F-B	70	20 (16m)	5.0 (4.0m)	
80gNtest59-S/C	70%-Clay (107 kPa)	21 (16.2m)	5.0 (4.0m)	
70gRtest60-S/C	70%-Clay (107 kPa)	21 (16.2m)	5.0 (4.0m)	

2 5

0

80gNtest23:砂土逆斷層 側視地表剖面影片

80gNtest38:黏土逆斷層 正視地表影片(由於剪切帶偏向上盤,因此 沒有拍到張裂縫)

□ 地表變形剖面的比較 (80gRtest23) 地表影響範圍約為上覆土層的厚度(20 cm)

□ 地表變形剖面的比較 (40gRtest21) 地表影響範圍約為上覆土層的厚度(20 cm)

□ 地表變形剖面的比較 (1gRtest20) 地表影響範圍稍小於上覆土層的厚度

- 傾角60°的逆斷層錯動時,在1g、40g及80g的試驗 條件下,地表高程劇烈變化影響範圍(W)約等於 上覆土層厚度(H)。
- 在相同的垂直錯動變位情況下,高g情況下的試體 較低g的試體有較窄的剪裂帶(可能膨脹角在高g情 況下受到壓抑)。
- 3. 高g情況下的試體地表坡度較緩。
- 未來利用合適的數學函數來模擬地表變形剖面, 估算不同厚度的上覆土層的地表變形曲線及位置。

80gNtest24:砂土正斷層 側視地表剖面影片 80gNtest37:黏土正斷層 正視地表影片

□ 地表變形剖面的比較 (80gNtest24) 地表影響範圍約為上覆土層厚度的0.8倍(16cm)

□ 地表變形剖面的比較 (40gNtest26) 地表影響範圍約為上覆土層厚度的0.8倍(16cm)

2

♥ 正斷層正規化地表變形剖面的比較

- •最大地表陷落處出現在斷層尖端位置
- •小的垂直陷落量時,有較大的正規化地表陷落量(1.3倍)
- 隨著垂直陷落量的增加,正規化地表陷落量逐漸減少
 (約1.1倍)

- 傾角60°的正斷層錯動時,在1g、40g及80g的試驗 條件下,地表高程劇烈變化影響範圍(W)約等於
 0.8倍上覆土層厚度(0.8H)。
- 在較小的垂直陷落量時,有較大的正規化地表陷 落量(1.3),最大地表陷落量出現在斷層尖端處(水 平距離0處);隨著垂直陷落量的增加,正規化地 表陷落量逐漸減少(約1.1)。
- 陷落最深處大約出現在水平距離0處(斷層尖端所處位置),然後向兩邊緩升。在低g的試驗條件下, 地下土層有較明顯的陷落及褶皺現象,染色的砂 土層也有較大的增厚現象(基盤上方砂層陷落)

30cm

30cm

80g時之接觸應力:31.4 kPa 80g時之接觸應力:52.9 kPa 模擬現地建築物為3層樓之情形 模擬現地建築物為5層樓之情形

80g時之接觸應力:86.0 kPa 模擬現地建築物為9層樓之情形 80g時之接觸應力:52.9 kPa 模擬現地建築物為5層樓之情形

試驗編號	g數	Dr(%)	斷層型式	基礎型式	基礎寬(cm)	基礎厚 (cm)	模擬樓層數	s/B
80gNtest35-F-A	80	70	正	А	12.5 (10 m)	0.5 (0.4 m)	3	0.5
80gNtest58-F-B	80	70	正	В	8.06 (6.5 m)	0.89 (0.7 m)	5	1
80gRtest39-F-B	80	70	逆	В	8.06 (6.5 m)	0.89 (0.7 m)	5	0.69
80gRtest41-F-B	80	70	逆	В	8.06 (6.5 m)	0.89 (0.7 m)	5	0
80gRtest52-F-B	80	70	逆	В	8.06 (6.5 m)	0.89 (0.7 m)	5	1
80gRtest47-F-C	80	70	逆	С	8.06 (6.5 m)	1.44 (1.1 m)	9	0.69
40gRtest57-F-D	40	70	逆	D	4.03 (3.25 m)	0.89 (0.7 m)	5	0

Building failure caused by reverse faulting

🔮 基礎座落位置對逆斷層錯動地表變位剖面的影響 🔁

1.越靠近斷層尖端變形越大
 2.地層傾角隨不同深度而改變
 3.土層厚度,影響越大,但土壤中的變形越小

利用試體飛行階段的沈陷量,求取constrained modulus, 建立M與 σ_z 的關係

不同深度輸入不同的Kn,但固定的Kn/Ks $V_p = \sqrt{\frac{M}{\rho}} = C_p(\sigma_z)^{2n_z} (\sigma_y)^{n_y}$ $M = \rho C_p^2 \sigma_z^{4n_z} = N \sigma_z^m = f(e) H K_n$

	參數	黏土	砂	軟岩
土層厚度		1m	9m	10m
顆粒勁	Kn(N/m)	2.08×10^{6}	2.08×10^{6}	2.08×10^{6}
度	Ks(N/m)	2.08×10^{6}	2.08×10^{6}	2.08×10^{6}
Parallel bond鍵結力(N)		1×10 ³	0	1×10 ⁴
顆粒間摩擦係數		0.466	0.466	0.466
土壤單位重γ(kN/m ³)		1.57	1.57	1.57
土壤與斷盤界面摩擦係數		0.43	0.43	0.43

一盤生長厚度

砂箱全長 下盤生長厚度 土層厚度 生長地層 錯動量 △H = 4 cm 斷層傾角 α (垂直)錯移速率: 2.9cm/min 🔪 ★ 設置監測點,形同虛擬網格★

巨觀參數	值
生長層生長次數	2次
斷層傾角	60°
砂箱初始寬度	1 (m)
第一層覆土厚度	0.2(m)
每次基盤重直錯動量	0.04(m)
生長層厚度(下盤)	0.02(m)
微觀參數	值
k _n	$5.16\times 10^6 (N/m)$
k_n/k_s	3
ball friction $angle(\mu)$	30°(0.577)
wall friction $angle(\mu)$	20°(0.364)
Ball density	2600(kg/m ³)

 $\Delta H/H$

♥ 數值模擬山腳斷層樹林剖面(34層生長地層) 🥂

微觀參數	值
ball radius	0.7 \cdot 0.8 \cdot 0.9(m)
ball density	2600(kg/m ³)
ball <i>k</i> _n	$5.16\times 10^6 (N/m)$
kn 隨深度修正公式	$\mathbf{K}_n = K_{no} (\sigma'_v / \sigma'_{vo})^{0.4}$
ball k_n/k_s	3
ball friction $angle(\mu)$	30°(0.577)
wall k_n	$6 \times 10^{20} (N/m)$
wall friction $angle(\mu)$	0°(0.364)
其他參數	值
斷層傾角	60°
假設每次基盤錯動量	2.5(m)

♥ 數值模擬橫移斷層砂箱實驗

 □ 比較右移、左移斷層
 □ 分解球顆粒位移行為 (x-壓縮分離、y-滑移距 離、z-抬升陷落)

探討不同土層厚度與錯動量對地表變形影響

微觀參數

ball radius = 2.625e-3 (m)

 $K_n = 2.08e6$

 $K_n/K_s = 3$

density = 2600 (kg/m^3)

friction = 0.577 (degree)

- 利用離心機實驗之結果來校正PFC2D的微觀參數kn,在固定kn/ks,並且kn隨深度而增加的條件下,得到良好的結果。建議的K_n = 0.58×10⁷ N/m, K_n/K_s = 3,μ=0.577其中逆斷層的結果又比正斷層好,原因為顆粒數不夠大。
- 以PFC(非連續體分析)進行斷層的數值模擬,其優點是顆 粒為分離的獨立單元,可以有相對位移、滑動、滾動。並 可以觀察顆粒分離、鍵結斷裂之現像。運算過程中不易發 散。透過比對現地調查及砂箱實驗的結果,也可以看到相 符的剪切帶發展趨勢。
- 當正斷層含有生長層,剪切帶會較快發展至地表(錯移率 僅需單一覆土層之約1/3~1/2),剪切帶對下盤的影響越大

■ 從目前的橫移斷層之數值模擬可得到以下結果:

- 位移量於平行斷層滑移面(Y)非常顯著,呈現透鏡狀
- 水平上垂直滑移面(X)量值最小,接近斷層破裂處(牆),往遠 離斷層面的方向移動
- 垂直面上且垂直滑移面(Z),在斷層破裂處(牆)有陷落行為, 在試體中間為抬升隆起,且呈雁型排列

♥ 斷層退縮考量-地震引發之地表變形

- □ 阿奎斯特-布里奧洛地震斷層區劃分法案 Alquist-Priolo Earthquake Fault Zoning Act of 1972
- □1990年「地震災害潛感區劃分法案」
 - (Seismic Hazards Mapping Act of 1990)
- □ 參考:
 - 2006- William A. Bryant-California Geological Survey
 - 2009-Surface Fault Displacement Hazard Berkeley , CA , May 20-21, 2009;USGS/California Geological Survey/ PEER

63

地震引發之地表變形-美國加州法規實例 Seismically Induced Ground Failure

5

- □ 參考 william A. Bryant (2006)
- □ 加州地質局(California Geological Survey, CGS)
- □ 加州地質局地震災害潛感區域(Seismic Hazards Zoning)

第 37 號

□ AP法案制定起因: 1971年聖弗南度(San Fernando) 發生M_w 6.6地震

(This Act resulted from the Mw 6.6 1971 San Fernando earthquake)

- □ 法案原稱為AP地質潛在災害法,目的為減少地表 變形危害
- (The AP Act originally was referred to as the *Alquist-Priolo Geologic Hazards Act* and was intended to address a broader scope of ground deformation hazards.)
- □ 1989年洛馬普利塔(Loma Prieta)發生M_w 6.9 Loma
 Prieta Earthquake,發生許多液化及山崩災害,地震
 後隔年制定地震災害潛感區劃分法案

🧭 CGS 地震影響地表破壞區域劃定計畫 5 **66** (Seismic Ground Failure Zonation Programs)

□ 1972 年「阿奎斯特-布里奧 □ 1990 年「地震災害潛感區 洛地震斷層區劃分法案 | (Alquist-Priolo Earthquake Fault Zoning Act)

□ 地表破裂

- 劃分法案 | (Seismic Hazards Mapping Act of 1990)
- □ 地盤破壞-山崩、液化

□ 找出較可能發生地表破裂之區域

(Identify where ground failure hazards are more likely to occur.)

□劃定"加強調查區域"

(*Delineate* "zones of required investigation")

□ 促生"地質或大地工程潛在災害報告",致使在潛災區建造耐震結構。

(*Trigger* "geologic or geotechnical hazards reports" that lead to earthquake resilient construction in hazardous areas)

□ 避免結構物跨越地表斷層破裂潛在災害區域,可減
 少災害的發生。

(Surface fault rupture hazard is mitigated by avoiding placing structures across traces of hazardous faults)

□ 地震斷層區域是指該斷層具有足夠的活動性而且可 以明確的定義。

(Earthquake Fault Zones-EFZ encompass hazardous faults, which are defined as those faults that are *sufficiently active* and *well-defined*)

□ 足夠的活動性:在全新世還有活動證據

(*sufficiently active* faults exhibit evidence of Holocene displacement (approx. last 11,000 years).)

■明確的定義:斷層跡可以由受過訓練之地質學家判定出來 (<u>well-defined</u>-trace detectable by trained geologist.)

地震斷層區劃分法案與地震災害潛感區劃分法案的差異在 減災的作法-地震斷層區劃分法案用避開的方式而地震災 害潛感區劃分法案允許用工程設計

Liquefaction

Seismically Induced Landslides

1989 Mw 6.9 Loma Prieta Earthquake

Bryant (2006)

□ 目的為減少地表斷層破裂潛災害

聖弗南度地震 1971 San Fernando Earthquake

70

Bryant (2006)

▼ 地表受斷層錯動破裂的重複性

□ San Andreas Fault - 華萊士小溪 (Wallace Creek)

5

 10個分區的斷層 評估與區域繪製 (10 Region Fault Evaluation and Zoning Program) Bryant (2006)

▼建立索引-Index to Alquist-Priolo Earthquake Fault Zone Maps (1974-2005)

 2006年已公告547幅地 震斷層帶地圖
 (547 Earthquake Fault Zone Maps issued as of 1/1/2006)

 36個縣和104個城市受 影響

 (36 Counties and 104 Cities affected)

5

- 制定時間: AP Act制定在先(1972), SHMA制定在後(1990), 兩法實施做法相當。
 (The Seismic Hazards Mapping Act (SHMA) is modeled after the Alquist-Priolo (AP) Act. Implementation of the SHMA generally is the same as for the AP Act)
- 重要差異: AP Act避免建物經過地震斷層地表破裂區域,而SHMA允許建物採用工程設計減災。
 (An important distinction is that where the AP Act mitigates surface fault rupture hazard by <u>avoidance</u>, the SHMA allows mitigation by <u>engineering design</u>)

地震災害潛感區域畫設的責任分工 (Seismic Hazards Zoning)

- □ 如果集集地震前已有AP法案規範,則生命財產安 全的損失將會大大的減少
 - ("...if development along the Chelungpu fault had occurred under AP regulations, the loss of life and property would have been greatly reduced."
 - -from Rubin and others, 2001, EOS, v.82, #47)

83

- 為了減少斷層錯動時地表變形引發的災害,參考加州案例進行空間的緩衝區(setback)與工程設計的緩衝・
- □利用近域的調查,了解斷層的活動影響範圍,並退縮一定影響範圍以減少破壞及變形。
- 針對調查過後的斷層可能位移量,對建物進行結構強度的提升。
- □ 透過科學方式減少斷層錯動時引發的災害:
 - □ 空間的緩衝區。
 - 工程設計的緩衝-上覆土層對地形的影響,尚待進一步科 學研究與驗証。

- □ 本文感謝中央地調所之經費補助。
- Bonilla, M. G. (1982) "Evaluation of potential surface faulting and other tectonic deformation". U.S. Geological Survey, Open-File Report 82-732.
- Bryant (2006)-http://www.1906eqconf.org/tutorials/EQHazMapGrndShaking_Bryant.pdf
- Bryant, W. A. (2010) "History of the alquist-priolo earthquake fault zoing act, California, USA". *Environmental and engineering geoscience*, 16(1), 7-18.
- □ Stoffer W.P.(2008) "Where's the Hayward Fault? A Green Guide to the Fault" USGU.
- Cole D. A. and Lade, P. V. (1984), Influence zones in alluvium over dip-slip faults. *Journal* of geotechnical engineering 110, 599-615.
- 李元希、吳維毓、石同生、盧詩丁(2000),九二一集集地震地表變形特性-埤豐橋以東,經濟部中央地質調查所特刊,第12號,第19-40頁。
- 許恒誌(2004), 盲逆衝斷層活動時上覆土層內破裂擴展行為與變形區範圍之研究,國 立臺灣大學土木工程學研究所碩士論文,台北。
- 鍾春富(2007),逆斷層錯動引致上覆土層變形行為及對結構物影響之研究,國立臺灣 大學土木工程學研究所博士論文,台北。

報告完畢 敬請指導

可拉斯加油管案例

2002,7.9M Denali EQ 1970年代調查規畫設計

工的以工程設計來滅災

Shift Happens!

(Denali Fault Earthquake Photos 07 Nov 2002)