

各種模型之比較

- *數值或理論模擬*
 - 易參數分析
 - 無尺度效應(DEM除外)

■ 需驗證

- 物理模型
 - 澄清破壞型態
 - 檢核數值或理論模型
 - 具重複性
 - 有尺度效應、需驗證

■ 現場觀測與回饋分析

- 足尺試驗無尺度效應
- 通常無法得到破壞型態 及極限荷重
- 不易進行參數分析
- 無重複性
- 上帝的足尺試驗

悽慘的世紀大災難的教訓

(集集大震、福島核災……)

NCENTRIFUGE

邊坡穩定離心模型試驗

離心模型試驗因次分析(一)
$$\sigma^{*} = \frac{\sigma_{m}}{\sigma_{p}} = 1.0 \quad \text{AND} \quad L^{*} = \frac{L_{m}}{L_{p}} = \frac{h_{m}}{h_{p}} = \frac{1}{N}$$
$$\sigma^{*} = \frac{\sigma_{m}}{\sigma_{p}} = \frac{\rho_{m}g_{m}h_{m}}{\rho_{p}g_{p}h_{p}} = \rho^{*}g^{*}h^{*} = 1$$
$$g^{*} = \frac{\sigma^{*}}{\rho^{*}h^{*}} = \frac{1}{h^{*}} = N$$

離心模型的試驗條件

- 使用與原型(Prototype)相同的材料
- 製作1/N的縮小尺寸模型
- 在N倍的離心力場進行模型試驗
- 模型內與原型對應點處有相同的應力
- ■模型孔隙水壓消散時間較原型快N²倍
- 動態試驗時,模型孔隙水壓激發較原型快 N倍。
- 利用Viscous fluid取代水作為孔隙流體, 則可解決此問題。

ENTRIFUGE

		NCENTE	21FUG	
離心模型與原型之相似律				
物理量	單位	因次比(離心模型/原型)		
加速度(acceleration)	m/sec ²	N		
長度 (linear dimension)	m	1/N		
應力 (stress)	kPa			
應變 (strain)	-	1		
密度 (density)	kg/cm ³	1		
質量或體積(Mass or volume)	kg or m ³	1/N ³		
單位重 (unit weight)	N/m ³	N		
力 (force)	Ν	1/N ²		
響矩(Bending moment)	Nm	1/N ³		
Bending moment/unit width	Nm/m	1/N ²		
Flexural stiffness/unit width (EI/m)	Nm²/m	1/N ³		
壓密時間(time: diffuse)	sec	$1/N^2$		
時間(time: dynamic)	sec	1/N		
頻率(frequency)	1/sec	N		

離心模型試驗的功能

- 複雜問題可以跟數值模擬互相印證
- 複雜問題可以作系統性的參數研究
- 破壞機制的探討
- 新工法的先導試驗及效益評估
- 先進的感測器、量測技術或試驗設備提供 更真實的施工模擬及準確的量測,提昇離 心模型試驗成果的可靠性

		NCENTRIFUGE		
NCU離心振動台規格				
Data loggon	Method	Servo-hydraulic single acting system		
(128 channels)	Shaking type	Periodic or random determined type		
	Shaking direction	One direction		
2 PCs on board	Nominal shaking force	± 53.4 kN		
	Max. shaking velocity	± 1 m/s		
	Max. table displacement	± 6.4 mm		
	Max. payload dimensions	1m×0.5m×0.5m (L×W×H)		
	Max. payload weight	400 kg		
1-D shaking table	Nominal shaking frequency range	0-250 Hz		
	Max. centrifuge acceleration	80 g		

Preparation methods of Model Ground

Consolidometer (saturated clay)

Pluviator (Dry sand)

Hydraulic consolidation is available

Compacted soil

NCENTRIFUGE

Actuators & Motors

Air cylinder

模型地盤*飛行階段*地下探查技術 Techniques of *in-flight* Subsurface Exploration for Model Ground

在80g的應力條件下,隨時可以進行地下探查是絕對必要的 地下探查過程中,對試體干擾愈小愈好 如果能進行非破壞性檢測(non-destructive test)則更好

1. Undrained shear strength profiles

- 2. Shear wave velocity profile along depths (dynamic soil properties)
- 3. System identification on the soil bed and structures

Computing FFT of the part of free Vibration to determine the fundamental frequencies of pile

Two fundamental frequencies are observed :
1. Fundamental frequency of sand bed
2. Fundamental frequency of pile

GENTRIFUGE

GEDTECHNICAL PHYSICAL MODELING

隧道的破壞機制

Surface profile scanner

Soil bed preparation

1. Characteristic of tested sand

	G _s	D ₅₀ (mm)	D ₁₀ (mm)	ρ _{max} (g/cm³)	ρ _{min} (g/cm³)
Quartz sand	2.65	0.193	0.147	1.66	1.44

2. Characteristic of tested sand bed

Use of air pluviation method to prepare the sample having relative density of around 75% and 50%. The sand bed has a height of 20 cm in model scale

人工粘土 Artificial Clay

均

Ē

攪

拌

使用人工粘土進行斷層試驗 之土樣,製作方法為甘油加 上皂土攪拌而成。

+

Ħ

油

MING BENTONIT

皂

土

NCENTRIFUGE

GEDTECHNICAL PHYSICAL MODELING

人工粘土試體床製作過程 (g/c=32%)

將拌和好的人工粘土鋪入試驗箱

利用承壓板壓至預定之高度

NCENTRIFUGE

GEDTECHNICAL PHYSICAL MODELING

扭剪儀量測每 層強度

B型淺基礎座落位置對正斷層錯動地表變位剖面的影響

淺基礎座落在上盤,基礎版 有較大的水平位移、垂直頂 升量及旋轉角;上盤的土壤 不會覆蓋基礎版之上。

淺基礎座落在下盤,基礎版 有最小的水平位移、垂直頂 升量及旋轉角;上盤的土壤 會覆蓋基礎版之上。作用於 建物側壁的力,應以被動土 壓力設計。

300

0

300

淺基礎座落在在上下盤間, 基礎版的水平位移、垂直沉 陷量及旋轉角介於兩者之間 ;上盤的土壤也會覆蓋基礎 版之上。作用於建物側壁的 力,應以被動土壓力來設計

B型淺基礎座落位置對逆斷層錯動地表變位剖面的影響

Building failure caused by reverse faulting

正斷層錯動試驗成果初步結論
■ 傾角60°的正斷層錯動時,在1g、40g及80g的試驗
條件下,地表高程劇烈變化影響範圍約等於0.8倍上覆土
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
■ 在較小的垂直陷落量時,有較大的正規化地表陷落量
(1.3),最大地表陷落量出現在斷層尖端處(水平距
離0處);隨著垂直陷落量的增加・正規化地表陷落量
逐漸減少(約1.1)。
■ 地表最大陷落深度較正斷層基盤陷落深度大(正規化地
表陷落量>1),隨著正斷層垂直陷落量的增加,正斷層
出
■ 淺基礎會影響斷層跡的發展及地表變形剖面

中央大學土木工程學系

中壢市五權里一鄰38號 Department of Civil Engineering Chungli, Taiwan 32054, Republic of China TEL: 886-3-4255239 FAX: 886-3-4252960