In-Situ Stress and Fractures

En-Chao Yeh¹, Wei-Cheng Li¹, Felix Fang-Yih Wu¹, Chao-Yan Lin¹, Ping-Chuan Chen¹, Chi-Shun Shui¹, Tsu-En Kao¹, Tien-Hsiang Sun¹, Shih-Ting Lin², Weiren Lin³, Tai-Tien Wang⁴, Jih-Hao Hung⁵, Yoshitaka Hashimoto⁶, Yih-Min Wu², Sheng-Rong Song², Chien-Ying Wang⁵, Wayne Lin⁷, Chi-Wen Yu⁸, Chung-Hui Chiao⁹, Ming-Wei Yang¹⁰, Chen-Kuo Lin⁷

- 1 Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan
- 2 Department of Geosciences, National Taiwan University, Taipei, Taiwan
- 3 Graduate School of Engineering, Kyoto University, Japan
- 4 Institute of Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan
- 5 Institute of Geophysics, National Central University, Taiwan
- 6 Department of Applied Science, Faculty of Science, Kochi University, Kochi, Japan
- 7 Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
- 8 Sinotech Engineering Consultants Inc., Taipei, Taiwan
- 9 Taiwan Power Company, Taipei, Taiwan
- 10 Taiwan Power Research Institute, Taipei, Taiwan

Take-Home Messages

- Integrated stress assessments from various methods, it will be able to determine the stress state in multiple spatial scales and stress gradient.
- Mechanical relationship between in-situ stress and fracture should be able to apply for various topics of solid earth sciences.

Outline

- Importance of Stress State for fracture
- Stress Determination
- Case Study
 - -CCS
 - TCDP
 - Waste Disposal
 - Geothermal Wells
- Summary

Importance of Stress State

Enhanced Geothermal System

EGS Development Sequence

Petroleum Drilling

Waste Disposal

DEEP DISPOSAL OF RADIOACTIVE WASTE - THE FINNISH MODEL

Carbon Dioxide Sequestration

Geoengineering

Fault Reactivation

Subduction Zone

Mantle Flow

Strain & Stress Determination

- GPS velocity field (GPS)
- Focal mechanism (FM)
- Fault slip inversion (FS)
- Bore-based methods

- Breakout (BO), Drilling-Induced Tensile Fracture (DIFT), Hydraulic Fracturing (HF),.....
- Core-based methods
 - Anelastic Strain Recovery (ASR), Acoustic Emission (AE), Deformation Core Diameter Analysis (DCDA), Core Observation (CO),....

Geomechanical model Stress observation from borehole failure

From N.C. Davatzes

Borehole Image

Stress Polygon

Zoback et al.,(2003)

Figure 5. (a) Plot of dt/dP versus *P* obtained from the pressure decay curve after shut-in and (b) $P-V_{\rm acc}$ curve at the second pressurization cycle in the HF test at 878.7 mbsf.

Ito *et al.*,(2013)

Stress Release

Anelastic Strain Recovery (ASR)

 $\epsilon(\epsilon) = \begin{bmatrix} \epsilon_{xx} & \epsilon_{xy} & \epsilon_{xz} \\ \epsilon_{yx} & \epsilon_{yy} & \epsilon_{yz} \\ \epsilon_{zx} & \epsilon_{zy} & \epsilon_{zz} \end{bmatrix} \begin{pmatrix} l \\ m \\ n \end{pmatrix}$

Acoustic Emission

Principal Stress

Fig. 2.4 Visualization of stress components in 3D on a cube **a** before and **b** after solving the eigenvalue problem of the stress matrix; engineering mechanics notation (tension positive convention)

Anderson's theory of faulting

• $2\theta + \phi = 90^{\circ}$

• **φ~30**⁰

Normal Faulting NF σ1 Strike-Slip Faulting SS

Reverse Faulting RF (Anderson 1951)

Slip & Dilation Tendency

(Morris et al., 1996; Ferrill et al., 1999)

(Collettini and Trippetta, 2007)

Stress Assessment from Boreholes

- CCS:~3000m, ASR, BO, HF
- TCDP:~1300m, ASR, BO, FM
- Waste:~600m, ASR, FS, FM
- Geotherm:600-800m, ASR, FS, FM, Vein
- Geotherm: 0-2200, ASR, HF, FM, DIFTs

CCS

	_				
Age		Martini's (1971) Zones	TPCS-M1井鑽遇 TPCS-M 之超微化石帶 鑽遇之	TPCS-M1井 鑽遇之地層	
Pleistocene	Late	NN20	G. oceanica Zone		
	Early	NN19	900 P. lacunosa Subzone small Gephyrocapsa Subzone C. dorrnicoides Subzone NF-3	層	
			<u>a</u> .	1717	
Pliocene	te	NN17-NN18	C. macintyrei Zone NF-77 卓蘭層(418m)	
	La	NN16	Reticulofenestra minutula Zone ^{NF-246} 錦水頁岩(16	6m) 2135	
	Early	NN15 NN14 NN13	NF-274 Sphenoliths abies Zone 桂竹林層(11	2295 7m)	
		NN12		////	
Miocene	Late	NN11			
		NN10		////	
	Middle	NN9		////	
		NN8		////	
		NN7			
		NN6	Cy. floridanus Zone NF-325 觀音山砂岩(1)	58m) 2450	
		NN5	S.heteromorphus Zone NF-361 打鹿頁岩上段(1)	04m) 2608	
	Early	NN4	H. ampliaperta Zone NF-404 打鹿砂岩 (48 打鹿頁岩下段(40	3m) 2712 Jm) 2760	
		NN3	S. belemnos Zone NF-447 北寮層 _井	2800 :底3001.6m	
		NN2	H. carteri Zone		
		NN1			

(王明惠,未發表)

Orientation (deg)

WOB:42.2+-10.0 SHmax: 85.3+-9.1 deg

450

Magnitude: ??

Taiwan Chelungpu-fault Drilling Project (TCDP)

BO⁰⁰

1000

(Wu et al., 2010)

FS

(Hashimoto et al., 2015)

Waste Disposal, Metagranite, Hoping

(Huang et al., 2012)

Open-Filling Fractures

(Lin, 2015)

CingShui Geotherm, Ilan

CingShui Geotherm, Ilan

vein, calcite, close

Core Observation

vein, calcite, open

kink, calcite, close

NoFilling vs Open Filling

Stress-Vein Integration Stereonet Mohr

SanHsin Geotherm, Ilan

SanHsin

3]

Shmin~13.6MPa @ 750-765m

SHmin-Shmin~23-27MPa @734m

Ε

Stress Magnitude

JY-01

102-2

(Kao, 2016)

以單軸抗壓強度&水破資料估計

N = 22 **Open-Filling Fracture** 40 30 20 10 10 20 30 40 50 50 1 +

• Open-Filling Fracture N24.2W/78.2NE

Future Works

- Critical pressure perturbation
- Fault reactivation analysis
- Stress magnitude from focal mechanism

Critical Pressure Perturbation

Fault Reactivation Analysis Seismic Hazard

(國家災害防救科技中心, 2015)

Stress Magnitude from Focal Mechanism

Stress_Depth

Take-Home Messages

- Integrated stress assessments from various methods, it will be able to determine the stress state in multiple spatial-scales and stress gradient.
- Relationship between in-situ stress and fracture should be able to apply for various topics of solid earth sciences.

Thank you for your attention!!

