應用重力及數值模擬研究區域地質構造 個案研究:新竹斷層、西南海域泥貫入體 Studying Geologic Structures in Lights of Gravity and Numerical Modelling Case Study on Hsinchu Fault and Mud Diapirs Offshore Southwestern Taiwan

連紫猗 Tzuyi Lien Institute of Oceanography, National Taiwan University

Partners: Cheinway Hwang, David Crossley, Emmy T.-Y. Chang, Eh Tan, CharShine Liu, LinagFu Lin, HsienHsiang Hsieh and WeiChung Han

2017.3.17

The state-of-the-art gravimetric observations:

GRACE

Satellite Altimetry

- Tectonic features in ocean basins(Sandwell etc)
- Ocean mass change

Absolute gravimeter: FG5

Relative gravimeter: CG5 、 EG 、 S130 、 SG

Superconducting Gravimeter (SG) Time-varying gravity

- High precision in determining the mass redistribution inside the Earth.
- Free oscillation of the earth, in particular triggered by the very big earthquakes.

Airborne/shipborne gravimeter (S130) Static gravity

Airborne/shipborne gravimeter (S130) Static gravity

Superconducting Gravimeter (SG) Time-varying gravity

Superconducting Gravimeter

Superconducting Gravimeter (SG T48) in Hsinchu

Superconducting Gravimeter

Effect	Magnitude (µgal)	Frequency range	Method
Solid earth tide	Up to 300	12-24 hr (dominated)	DDW (Dehant et al., 1999)
Ocean tide loading	10	12-24 hr (dominated)	NAO.99b (Matsumoto et al., 2000)
Local atmospheric pressure	10	Minutes to seasonal	Standard model (Torge , 1989) using pressure data
Polar motion	5	Annual	Standard model (Torge, 1989) using IERS data
Non- local hydrology	0.5	Daily to annual	From GPP using GLDAS
Non- local atmospheric pressure	Up to 1.5	Minutes to seasonal	From GGP using ECMWF

Groundwater modeling

Governing groundwater flow equation is derived from <u>Darcy's law</u> and <u>continuity</u> <u>equation</u> (Bedient and Huber, 2002), and can be expressed as:

 $\frac{\partial}{\partial x} \left(K_x b \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_y b \frac{\partial h}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_z b \frac{\partial h}{\partial z} \right) - W = S \frac{\partial h}{\partial t}$

where W is recharge/discharge, h head, b thickness of aquifer, S storage coefficient.

- In unconfined aquifer, storage coefficient is equal to specific yield (S_y), and the thickness of aquifer is equal to head.
- > In confined aquifer, storage coefficient is $S = S_s b$ (S_s specific storage), and the thickness of aquifer is constant.
- Modular three-dimensional groundwater flow model (<u>MODFLOW</u>; Harbaugh et al., 2000)
- > A program developed by the USGS for modeling 3D groundwater field
- Using block-centered finite-difference method to compute water head at each grid.

Model A: Without Fault

The modeled water levels north of the HF are too high, causing groundwater to discharge into the Touchien River more rapidly than the observations; the water should ideally stay on the south side of the study area.

246000

244000

248000

250000

252000

from Model A (in green) and Model B (in red)

Hsinchu Fault (HF)

圖二 竹東丘陵區域數位地彩圖(DTM)及活動斷層分布 From CGS report

- Almost none **outcrop** evidence found in field investigation [Tang, 1968]
- Very quiet in terms of seismic activity
- Surface deformation monitored by
 GPS did not find significant slip [Shea et al., 2011]
- Static **gravity** could not tell fault from folding [Pan, 1965]
- **Geomorphology** strongly suggested existence of fault [Chen et al., 2004]
- Seismology supported the existence of the fault [Yang et al., 1996]
- **Borehole** well data showed positive evidence (from CGS)

Caine et al. [1996]

Wibberley and Shimamoto [2003]

Micarelli et al. [2006]

Caine et al. [1996] showed that if a water-resistant core has been formed, a **decrease of conductivity** usually occurs in the direction **perpendicular to the fault plane**.

At a location where the water flow is **parallel to the fault plane**, the conductivity may increase due to the **increase in permeability** provided by the microfractures in the damage zone [Wibberley and Shimamoto, 2003].

Toukoshan Formation
 Cholan Formation
 Chinshui Formation
 Kueichulin Formation
 Shangfuchi Formation
 Hopai Formation
 Hopai Formation
 Talu Shale
 Peiliao Sandsone
 Chuhuangkeng Formation + Piling Shale
 Mushan Formation
 Wuchushan Formation

Micarelli et al. [2006] showed that the existence of a **fault core** is always associated with significant displacement of **slip**.

- Mechanisms of fault slips include cataclasis, particulate flow, grainscale mixing, and clay smearing, and different mechanisms result in different types of deformation bands [Bense et al., 2003].
- Therefore, the existence of a fault core provides evidence that the underlying fault may be active.

Model B: With Fault

0

2738000

2738000

2738000

Observed groundwater tables (in black) with predictions from Model A (in green) and Model B (in red)

(left column) Hydraulic heads (unit: m) from Model A and (right column) the differences in hydraulic head between Model B and Model A in selected months.

Gravity Effects

Gravity: sum of mass anomaly in space

Groundwater well: limits of spacial distribution

Monthly data is enough to define the result of gravity change due to water level and fault.

effects in dry and wet seasons in one e biggest contrast when assessing the

1V	E			
JUN-	146000 2		Purpose	Inferences based on statistical test
9	21			
B	2743000	9	to verify the existence of HF	Existence of HF is accepted
	000		to detect fault	100 m shift to north
R	00 2740	rth	location	is more likely than current HF location
00	2737(to test the top	most recent slip of
Meters			"opening" of HS fault	HF can be dated to
Format	tion		to estimate latest	the beginning of
			seismic activity	Holocene
wells			to verify the	existence of wrench
			existence of wrench	fault is inconclusive
			fault	

Ocean Research I (ORI) shipborne gravity

since 2009 to the present

131 cruises

gravity data

Free-air gravity anomaly related to topographic feature

Distribution of mud diapirs: Chen, S.C., et al., 2014

No data area is filled by Hwang et al., 2014

Bouguer gravity anomaly

Bouguer gravity anomaly

Lateral density anomaly

Surface Gravity Anomalies

Buoyancy force

Possible causes to have the "slightly" lateral density anomaly,

(1) Intrusion of fluid or mud diapir to the shallow strata. -

(2) The convergent structures, folding, faulting, etc

negative gravity anomaly

positive gravity anomaly at folding axis or the raising of strata by fault

Anticline

Tectonic deformation modelling - DynEarthSol2D

Fixed in normal component Free in shear component

Winkler foundation

[Geometry design]

- length, width, height,

- layers

[Material parameters]

rheology type, number of materials, density, bulk modulus, shear modulus, viscosity, heat capacity, plastic strain, cohesion, friction angle [Others]

temperature, erosion and sedimentation rate, water loading, weak zone

С	onv	erge	nt rat	e: 2	.5 cm/	/yr	
R	heo	logy	type	: ela	sto-v	isco-p	lastic

Sediment	Light/dense material	Oceanic crust

Density (kg/m³)	2400/2460	1800/2460	2800
Bulk modulus (GPa)	20	8	50
Shear modulus (GPa) 6	3	30
Viscosity (Pa.s)	1e17	1e18	1e24
Plastic strain 0	0	0	0
Plastic strain 1	1	1	1
Cohesion 0 (MPa)	40	40	40
Cohesion 1 (MPa)	4	4	10
Friction angle 0 (°)	10	10	30
Friction angle 1 (°)	1	1	15

Geometry design

Two layers

Light material

Dense material

Fault and fold

Mud diapir and fault

Fault and fold

Two layers

Light material

Dense material

Dehydration from light material

Setting of dehydration: Water content of light materials decrease from 0.54 to 0, while density increase from 1800 to 2700 kg/m3.

Does geometry matter?

10

Distance (x10^3)

15

Verifying consequent gravity with the numerical modelling

- The light materials, e.g. fluid, gas, etc, can form diapir-wise structure penetrating srata, however which will always generate a negative gravity anomaly
- The **dense** buried materials cannot be injected into upper layers, while their folding or faulting can move parts of them to shallow levels → may have **positive** gravity anomaly
- Dehydrated dense diapir-wise materials can balance with upwelling diapirs but sink eventually → positive gravity anomaly

 \rightarrow A clue to study the physical properties of the underlying strata, density, compaction, shear/bulk modului etc.

strike-slip fault zone transpressional ridge

