從南北十條橫跨花東縱谷震測剖面 看海岸山脈造山

Examining Costal Range Mountain Building from 10 Seismic Profiles across the Longitudinal Valley

王乾盈

團隊:郭陳澔、張文彥²、郭炫佑、管卓康、孫維芳²、謝一銘、賴思穎 中央大學地球物理所 ²東華大學環境學院

- 1. 海岸山脈與造山運動(mountain building)
- 2. 縱谷北段震測剖面
- 3. 縱谷中北段震測剖面
- 4. 縱谷中南段震測剖面
- 5. 縱谷南段震測剖面
- 6. 構造模型
- 7. 2018花蓮地震與米崙斷層
- 8. 結論

海岸山脈是造山主角之說

Accretionary Wedge

10 / 20

Please cite this article as: Thomas, M.Y., et al., Lithological control on the deformation mechanism and the mode of fault slip on the Longitudinal Valley Fault, Taiwan, Tectonophysics (2014), http://dx.doi.org/10.1016/j.tecto.2014.05.038

(Thomas, et al., 2014)

海岸山脈分次碰撞

由北而南 依次碰撞

順時針轉30度

(Lee et al., 1991)

台灣省地形。林朝棨。P. 159

海岸山脈與花東縱谷河系

現在的海岸山脈以台東縱谷平原,與中央山脈隔離,但過去之海岸山脈與中央山地東坡,連結呈<mark>該東坡之東端</mark>,上列許多平行河流乃並列向東流出東海岸,呈完整之順向河道。海岸山脈東側海崖附近河階砂礫層中之礫石,均由大南澳片岩類被侵蝕又搬運而來者,而海岸山脈東側之太平洋岸附近,有此等平行順向河之舊河口,沉沒於海中,呈獨谷(Drowned valley),其規模比現在海岸山脈東坡之河谷,大許多倍。海岸山脈之分水嶺亦有舊河流之遺跡,呈風口(Wind gap)。此等事實均為上述諸並行順向河群曾經向東流入太平洋之明證。

唯更新世中壢期,<mark>斷層作用</mark>造成台東縱谷平原,河系遂受其影響,改向北 方或南方流出,經爭奪合併等現象發生後,始分成現在三大河系。

海岸山脈地層

高解析反射震測 resolution reflection seismics

反射震測法 (reflection seismics)

兩種反射震測 (Two kinds of reflection seismics)

	深度	紀錄時間	間距	展開	頻率	經費
1)高解析度(high resolution): 2) 探油(oil exploration):					120Hz 50Hz	20萬/km 80萬/km

1) 高解析度:活動斷層、淺部地層構造2) 探油: 探勘油藏、區域地質構造

高解析度震測 (2 sec)

探油震測 (5 sec)

重型震盪震源

Anticlinal fault-bend folds

Kinematic Model

Crows Nest Pass, Alberta, Canada. (JHS/FDB)

Shaw, J.H., Connors, C., Suppe, J. (2005) Seismic interpretation of contractional fault-related folds. AAPG Studies in Geology no.53.

High resolution seismics

Anticlinal fault-bend folds

Kinematic Model

High resolution seismics

(from CPC)

梅山地震: 1792 → 1906→2020?

嘉義 九芎坑斷層(D剖面)

D剖面之斷層構造演化推論

Fault-propagation Folding

- 1. 海岸山脈與造山運動
- 2. 縱谷北段震測剖面(N)
- 3. 縱谷中北段震測剖面
- 4. 縱谷中南段震測剖面
- 5. 縱谷南段震測剖面
- 6. 構造模型
- 7. 2018花蓮地震與米崙斷層
- 8. 結論

縱谷北段(N) 推測地質剖面(Geology Profile)

D_HwaTon

強渡溪流(across river)

光復 (馬鞍溪剖D)

壽豐溪剖面

光復 (馬鞍溪剖面D) 馬太鞍溪(光復) 壽豐溪(鳳林)

馬太鞍溪(光復)

壽豐溪(鳳林)

馬太鞍溪(光復)

木瓜溪(東華)

- 1. 海岸山脈與造山運動
- 2. 縱谷北段震測剖面
- 3. 縱谷中北段震測剖面(Cn)
- 4. 縱谷中南段震測剖面
- 5. 縱谷南段震測剖面
- 6. 構造模型
- 7. 2018花蓮地震與米崙斷層
- 8. 結論

縱谷中北段(Cn) 推測地質剖面(Geology Profile)

奇美斷層

- 1. 海岸山脈與造山運動
- 2. 縱谷北段震測剖面
- 3. 縱谷中北段震測剖面
- 4. 縱谷中南段震測剖面(Cs)
- 5. 縱谷南段震測剖面
- 6. 構造模型
- 7. 2018花蓮地震與米崙斷層
- 8. 結論

縱谷中南段(Cs) 推測地質剖面(Geology Profile)

- 1. 海岸山脈與造山運動
- 2. 縱谷北段震測剖面
- 3. 縱谷中北段震測剖面
- 4. 縱谷中南段震測剖面
- 5. 縱谷南段震測剖面(S)
- 6. 構造模型
- 7. 2018花蓮地震與米崙斷層
- 8. 結論

1990年 卑南山測線 (王執明教授委託中油執行,史前博物館計畫)

皆朝向都蘭山

www.molii.com

Prehistoric Culture Museum

1990年 中油 卑南山測線

1990年 中油 卑南山測線

1990年 中油 卑南山測線

- 1. 海岸山脈與造山運動
- 2. 縱谷北段震測剖面
- 3. 縱谷中北段震測剖面
- 4. 縱谷中南段震測剖面
- 5. 縱谷南段震測剖面
- 6. 構造模型 (Structure Pattern)
- 7. 2018花蓮地震與米崙斷層
- 8. 結論

縱谷南段(S)

Joint inversion with surface and body waves:

High quality travel-time data

High quality surface wave data

Prof. Y. B. Tsai

蔡義本教授1974年,利用炸藥震源,進行横跨花東縱谷及 海岸山脈的折射震測研究

Tsai, Y. B., Y. M. Hsiung, H. B. Liaw, H. P. Lueng, T. H. Yao, Y. H. Yeh and Y. T. Yeh, 1974: A seismic refraction study of eastern Taiwan. *Petrol. Geol. Taiwan*, 11, 165-182.

Wang, C.Y. and K. P. Chen, 1997: A seismic refraction profile across the Longitudinal Valley near Hualien, Taiwan. *Terr. Atmo. Ocean*, 8, 295-312.

Seismic Reflection:

光復剖面

- 1. 海岸山脈與造山運動
- 2. 縱谷北段震測剖面
- 3. 縱谷中北段震測剖面
- 4. 縱谷中南段震測剖面
- 5. 縱谷南段震測剖面
- 6. 構造模型
- 7. 2018花蓮地震與米崙斷層(Milun Fault)
- 8. 結論

2018/04/02,06 花蓮地震 (ML=5.9 及 6.3)

e 2018 HuaLien Earthquake (ML=6.3, Mw=6.4, depth=10.6km)

before earthquake

after earthquake

米崙斷層

1992

1963

花蓮地震

1986/11/15

花東縱谷地震系列

1938

1919

1951/10/22 1951/11/25

1951 HuaLien-TaiTon Sequence Earthquakes

發護時間	緯度 (°N)	經度 (°E)	震源深度 (km)	地震規模 (ML)
1951/10/22 05:34	23.875	121.725	4.0	7.4
1951/10/22 11:29	24.075	121.725	1.0	7.1
1951/10/22 13:43	23.825	121.950	18.0	7.3
1951/11/25 02:47	23.100	121.225	16.0	6.1
1951/11/25 02:50	23.275	121.350	36.0	7.3

火車站前

明禮國小

2018

花蓮-蘇澳外海(台灣地震最密集帶)

終端扇型壓縮帶

木瓜溪折射震測 (Wang and Chen, 1997)

50kg

七星潭測線

(Wang and Chang, 1994)

20180206 花蓮地震

臨時站 餘震分布(最佳1500個)

(郭陳澔、管卓康、孫維芳,2018)

同震變形

衛星影像資料: Sentinel-1A 2018/02/05 (D) Sentinel-1B 2018/02/11 (D) Sentinel-1A 2018/02/03 (A) Sentinel-1B 2018/02/09 (A) 24°06' GPS資料: 東華大學 中央研究院 中央氣象局 24°00' NDH1 23°54' 23°48' 20 cm 121°42' (景國恩,**2018)** 121°24' 121°30' 121°36' -25 -20 -15 -10 20 -5 25 15 106 U-D component displacement(cm)

(張中白與 顔君毅, **2018**)

(郭陳澔、管卓康、孫維芳,2018)

餘震分布

台灣省地形。林朝棨。P. 335 花蓮隆起海岸平原

台灣省地形。林朝棨。P. 335 花蓮隆起海岸平原

台灣省地形。林朝棨。P. 335 花蓮隆起海岸平原

中大太遙(2018)

木瓜溪 偽複合沖積扇

木瓜溪隆起造成 木瓜溪沖積扇往南遷移

北米崙台地

米崙山

花崗山

嘉里隆起

吉安隆起

米崙溪隆起

木瓜溪隆起

鯉魚潭

木瓜溪隆起造成 鯉魚潭堰塞湖

東華大學

- 1. 海岸山脈與造山運動
- 2. 縱谷北段震測剖面
- 3. 縱谷中北段震測剖面
- 4. 縱谷中南段震測剖面
- 5. 縱谷南段震測剖面
- 6. 構造模型
- 7. 米崙斷層
- 8. 結論 (Conclusion)

結論

- 1. 海岸山脈分三段造山(北、中、南)。
- 2. 海岸山脈未見明顯推擠「中央山脈之造山」。
- 3. 縱谷北段為抬升式造山,嶺頂斷層不存在。
- 4. 縱谷中段為擠壓式造山,利吉混同層擠進縱谷底下, 沖積層薄於1公里。
- 総谷南段為推併式造山,大量利吉混同層併入縱谷 地層。
- 6. 縱谷斷層埋於厚(<2公里)之沖積層及厚1.5公里之上新世地層的下方,為海岸山脈都蘭山層與中央山脈變質岩地層之交界,斷層面近乎垂直。
- 7. 米崙斷層即縱谷斷層,南北走向,為高角度斷層, 微西傾。
- 8. 花蓮隆起海岸平原有數處東西向長條隆起,與板塊向下隱沒之彎曲帶有關。

THANKS!

吉安鄉測線

(Wang and Chang, 1994)

吉安隆起 見東側地層抬起 測線位置 -井孔位置 # 測線編號 A1~D6 D1 o SW D5 1600 **D4** 200 1200 1400 -100 -200 -400

花蓮 鯉魚潭

木瓜溪隆起造成 鯉魚潭堰塞湖

鯉魚潭位於花蓮壽豐鄉池南村鯉魚山腳下,距花蓮市僅18公里。鯉魚潭南北最長處約1.6公里,東西最寬處約930公尺,最深處15公尺,為木瓜溪及花蓮溪支流所形成的堰塞湖,湖的面積約104公頃,湖水來自地底湧泉,終年清澈,是花蓮縣內最大的內陸湖泊,地質上屬於中央山脈系統,東有鯉魚山、西有銅門。當地人原稱之為「大陂」,阿美族人則稱之為「巴鬧」,後因東傍鯉魚山而被命名為鯉魚潭。

根據地質學家的研究,在鯉魚山、銅門山及木瓜山之間,曾有一條古銅蘭溪,鄰近的文蘭溪、荖溪、白鮑溪與平和溪均為古銅蘭溪的支流,而鯉魚潭目前的地點,則是古銅蘭溪 一段河面較寬的河面。由於向源侵蝕的作用,平和溪與白鮑溪之間,以及荖溪與白鮑溪之間均曾發生過河川襲奪現象,造成荖溪的流向改變,古銅蘭溪的水量驟減。加上鯉魚潭 北側的文蘭溪沖積扇因崩塌淤積,造成鯉魚潭出水口的堵塞,以及荖溪伏流的湧出,形成一處堰塞湖,也就是今日鯉魚潭的雛形。(資料來源:花東縱谷國家風景區官網)

- (一)河川襲奪發生前,荖溪、白鮑溪是古銅蘭溪的支流,兩條溪匯集後向北流入木瓜溪,古和平溪則流入花蓮溪
- (二)前期襲奪為古和平溪的向源侵蝕,切穿分水嶺,襲奪古銅蘭溪和白鮑溪。
- (三)後期襲奪為古銅蘭溪繼續向北侵蝕,襲奪支流荖溪,在池南森林遊樂區東北方形成襲奪灣,荖溪與古銅蘭溪、 古和平溪形成今日的荖溪,而池南古銅蘭溪則成斷頭河。
- (四)古銅蘭溪因襲奪成為斷頭河後,水量減少,無法沖刷其北方的文蘭溪挾帶而下的泥沙,在今日鯉魚潭的北方行 形成沖積扇,逐漸堰塞河道,舊河道積水成湖,形成鯉魚潭這個典型的堰塞湖。