Why and How Geothermal Energy Works — Environmental Benefits and Successful Outreach Strategic Plans Worldwide

2018/05/18 (Fri.)

National Central Univ. Department of Earth Sciences and Institute of Applied Geology

Shou-Cheng Wang

geothermalbnl@gmail.com

Doctoral Candidate Institute of Earth Sciences, National Taiwan Ocean University

Preparatory Office of Taiwan Geothermal Energy Alliance

Outline

Solution and threshold of <u>climate crisis</u>

Energy Transformation by Renewable Energy

Why Geothermal Energy Promoted by UN

How Geothermal Energy Promoted by UN

Conclusions & What we have done

Solution and threshold of climate crisis

We have no much time left and we are beyond no return

global mean sea-level rise in the past and future

Peter U. Clark et al., 2016 NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE2923

Intergovernmental Panel on Climate Change (IPCC)- The Nobel Peace Prize 2007

Climate change escalating so fast it is 'beyond point of no return'

New study rewrites two decades of research and author says we are 'beyond point of no return'

Peter Walker | Friday 2 December 2016 | 💭

Click to follow The Independent Onlin

Global Energy Transformation: A Roadmap to 2050

Cumulative energy-related carbon emissions (Gt CO₂)

Energy Transformation by Renewable Energy

We have no much time left and we are beyond no return

100% CHINESE TAIPEI

Transition to 100% wind, water, and solar (WWS) for all purposes (electricity, transportation, heating/cooling, industry)

From 139-country 100% Clean and Renewable roadmaps (Jacobson et al., 2015), geothermal energy in Taiwan should reach 3,028 Mwe in 2050, about 27.140%.

Our \ulcorner Energy Thansformation challenge in near future: 2018 \rightarrow 2020 \rightarrow 2050 0 % \rightarrow 0.293 % \rightarrow 27.140%

27.2 % =>30 GW

DISTRBUTION OF TAIWAN'S GEOTHERMAL RESOURCES

1.ITRI , 20122.Store heat method

159.6 Gwe (Frank Yang et al., 2015 WGC) 180 Gwe (Ping-Yu Chang et al, 2013)

Tuchang

Chipen

Chinlun

- Potential geothermal fiel
- Hot spring spot
- Heat flow contour (HFU)

Site	Area (km²)	Temp. (°C)	Geology code	Resource code	
I Tatun	278	236	3	4~5	
II Chingshui- Tuchang	909	223	1	3~4	
III Lushan	279	210	1	3~4	
IV Rueisuei-Antong	467	195	1	3~4	
V Wuloo	571	196	1	3~4	
VI Chipen-Chinlun	701	214	1	3~4	
VII Paullai	476	205	1	3~4	
VII Guanziling	510	197	4	3~4	
IX Hsinchu- Miaoli	343	192	4	3~4	

Geology Code	Geologic type	Resource Code	Resource fluid characteristics	No. of fields	No. of wells
1	Granitic/higher-grade metamorphic	4	Moderate temperature	1	38
		5	High temperature	1	150
2 Tertiary and older volcanic/ volcaniclastic (large-scale volcanic structures absent)	Tertiary and older volcanic/ volcaniclastic (large-scale volcanic structures absent)	3	Low temperature	5	98
		4	Moderate temperature	4	98
		5	High temperature	1	33
	7	100 percent steam	1	378	
3 Younger volcar clastic (large-sc structures (volc ras) preserved)	Younger volcanic/volcani- clastic (large-scale volcanic	4	Moderate temperature	6	155
		5	High temperature	15	522
	structures (voicanoes, caide- ras) preserved)	6	Ultra-high temperature	12	539
		7	100 percent steam	2	93
4	Sedimentary basin (clastic, drilled above basement)	3	Low temperature	2	178
		5	High temperature	1	13
		6	Ultra-high temperature	2	257
5	Sedimentary basin (clastic, wells drilled into basement)	2	Very low temperature	1	9
		3	Low temperature	1	8
		4	Moderate	2	4

1)	non-electrical grade (<100°C);
2)	very low temperature (100°C to <150°C);
3)	low temperature (150°C to <190°C);
4)	moderate temperature (190°C to <230°C);
5)	high temperature (230°C to <300°C);
6)	ultra-high temperature (300°C+); and
7)	steam field (230°C to 240°C).
Re	f: Sanyal (2005)

For moderate temperature resource, the production is 3-12 MW per well; For high temperature resource, the production is 12-25 MW per well.

It is crucial that the combination of enthalpy and resource types are fully assessed before drilling starts.

Ref: Success of Geothermal Wells: A global study

GEOTHERMAL CONCEPTUAL MODEL

BPD: Boiling Point vs. Depth

15

HIGH RESOLUTION RESERVOIR EXPLORATION (WITH LBNL)

Y.-C. Huang et al. / Journal of Volcanology and Geothermal Research (2017)

<u>利用高解析度微震探勘技術建構低風險地熱開發策略</u>,技師期刊 2017,王守誠等

THE FIRST GEOTHERMAL POWER ON-GRID FROM 2001~2018

Why Geothermal Energy Promoted by UN

We have no much time left and we are beyond no return

WORKSHOP THEMES

UPSTREAM Nature of the resource

Heat-sources and volcanos Geothermal exploration Geothermal modelling MIDSTREAM Harnessing and production

Production technology Power cycles Well design DOWNSTREAM

Diversified utilization

Cascaded use Industrial applications Waste to Value

CROSS-CUTTING

Sustainability – Social benefits – Innovation

Ethano,

Biofues

Production

Beet Sugar

Evaporation

& Pulp

©Geothermal Education Office 2005 • www.geothermal.marin.org Bustration & Design: Will Suckow Eustration, www.willsuckow.com *Renewable hydrogen can be produced using geothermal electricity and/or heat. **Cool water is added as needed to make the temperature just right for the fish.

Clean steam plant, Kawerau geothermal plant, Taupo, New Zealand

MERITS OF CONVENTIONAL GEOTHERMAL SYSTEM

for Electricity Production, 2015 (united nations environment programme)

MERITS OF CONVENTIONAL GEOTHERMAL SYSTEM

for Electricity Production, 2015 ((united nations environment programme)

Baseload Renewables: The Important Facts, Baseload Renewable Energy Summit, 2016

THE WELLHEAD GEOTHERMAL PLANT BUILT IN 16 WEEKS

AUTO DRILLING TECHNOLOGY

How Geothermal Energy Promoted by UN

We have no much time left and we are beyond no return

System-EGS

=Hot Dry Rock

System-CGS

Ladislaus Rybach, 2014

Inga S. Moeck, 2015

24 28 countries use geothermal power in 2020

Data from \lceil 2016 Annual U.S. & Global Geothermal Power Production Report $_$

Conclusions & What we have done

We have no much time left and we are beyond no return

 Relocated seismic activities M_L >4.0 Huang H. H. et al., 2012
6 km
12 km
BPT
BPT
BPT
Supercritical fluids

 the maximum strength zone,
a nest of earthquakes and fractures.

a bottom surface of seismicity, fracturing and hydrothermal convection

SELF-ORGANIZATION OF EARTHQUAKE SWARMS IN GEOTHERMAL FIELDS

20 01

-30

-30

0

10

15

5

10

15

GEOTHERMAL PROMOTION TEAM

- 1. National Energy Project 2nd stage
- 2. NTOU(National Taiwan Ocean Univ.) has organized with several local and foreign companies for promoting geothermal energy.
- 3. We wish to cooperate in essential issues with IGA and IEA-GEA, expanding to environmental impact & monitoring and legal experience.

Sep. 4, 2015 MOU between LCY and NTOU

Jan. 21, 2016 MOU between GEL and NTOU

Short-term strategies

- Setting up geothermal well database from CPC, ITRI and WRA (of MOEA). => MOEA developing
- Transforming Petroleum fund of MOEABOE to <u>national risk</u> <u>mitigation fund</u> => MOEA done by 「Geothermal power system demonstration incentives」
- International cooperation in <u>mature geothermal</u> technologies. => private company developing
- Developing <u>air drilling</u> technology to further geothermal TOUGH GOAL: drilling case. => private company developing
- Establish Expanded Business Model Working Group (EBMWG) for geothermal development
 Preparatory Office of Taiwan Geothermal Energy Alliance

Long-term strategies

- Cultivating technical manpower for geothermal engineering via international cooperation.
- Building up Geothermal Energy Law and a national geothermal committee to reduce risks and cost.

STRATEGIES FOR mai TOUGH GOAL: 150 MW IN 2020

Statistics:

- Size of country: 783,562 km².
- 2. Population: 78,741,053 (2015).
- Years of producing electricity from geothermal: 32 years, from 1984.
- Installed capacity of geothermal (MWe): 820 MWe (2017).
- Installed capacity of other sources (MWe): 77,614 MWe (2015).
- 6. Electricity production from geothermal (GWh): 3,424 GWh (2015).
- Electricity production from other sources (GWh): 254,935 GWh.
- 8. Proportional production by source:
 - Coal 29.09%
 - Natural Gas 37.90%
 - Liquid Fuels 0.85%
 - Hydro 25.65%
 - Wind 4.45%
 - Waste Heat 0.16%
 - Biomass 0.52%
 - Solar 0.07%
 - Geothermal 1.31%

GEOTHERMAL-TRANSPARENCY-GUIDE_ABB

Turkey

GEOTHERMAL ACT

Boosting geothermal energy more than 1,000 MW from 2008~2018

Cheap geothermal power as NTD 3 /kWh

THE IDEAL ENERGY STRUCTURE

- 1. Geothermal can play the distributed base-loading power in region.
- 2. For better performance, replacing tip-loading fossil fuels by storable clean energy is essential, like hybrid geothermal plant with biomass, hydrogen fuel cell.

CIVIL GEOTHERMAL PLANT

- 1. Place: Letzer industrial area in Yiland plain
- 2. Heat source : hydrothermal reservoir in Sanxin fracture zone
- 3. Estimated depth : 2000~5000 meters(200~300°C)
- 4. Operation : BOT(Build-operate-transfer) or PPP(Public-Private-Partnership)
- 5. Civil geothermal plant can be part of "circular economy" in local, especially in low-carbon tech.
- 6. Benefit corporation(B corp.) certificate, ISO14001(like Valle Secolo geothermal plant) for a greener and more public power supplier.

Thanks for your attention. We do not have much time left.

Costs of Energy, Including Transmission (¢ / kWh)

ENERGY TECHNOLOGY	2010-2013	2020-2030
Wind onshore	4-10.5	≤4
Wind offshore	11.3-16.5	7-10.9
Wave	>11	4-11
Geothermal	9.9-15.2	5.5-8.8
Hydroelectric	4-6	4
CSP(concentrating)	14.1-22.6	7-8
Solar PV (utility scale)	11.1-15.9	5.5
Tidal	>>11	5-7
Conventional (+Externa	lities) $9.2(+5.3) =$	14.5 14-19 (+5.7)=20-25

Jacobson et al. (2013)

			230~300C: 25 MW/well	190~2300 3-12 MW	C /well	150~190C 3-5 MW/well
		(L	Unit Cost JS ¢/kWh) High Quality Resource	Unit Co (US ¢/k) Mediu Quali Resou	ost Wh) Im ty rce	Unit Cost (US ¢/kWh) Low Quality Resource
300 houses	Small plants (<5 MW) Medium Plants (5-30 MW)		5.0-7.0	5.5-8.5		6.0-10.5 NTD 3.15元/kWh
			4.0-6.0	4.5-7		Normally not suitable
Over 9,000 houses	Large Pla (>30 M	ants //W) N	2.5-5.0 TD 0.75元/kWh	4. <mark>0-6</mark>	.0	Normally not suitable
				固定 20 年 躉購費率		5.1956
	地熱	無區分	≧1	階梯式 躉購費率	前 10 年	6.1710 〔5.6447〕 ^{註3}
					後10年	3.5685 (4.4465) ^{推3}