南沖繩海槽新發現熱液活動區之地化特徵 Geochemical Characteristics of New Discovered Hydrothermal Activity Zone in South Okinawa Trough

蘇志杰¹、吳炫賦¹、藍德芳²、李曉芬³、林玉詩⁴、許鳳心¹、 陳宜君¹、徐聖婷¹、陳瑞娥⁵、陳松春⁵、王詠絢⁵

¹國立臺灣大學海洋研究所
²國立臺灣大學地質科學系
³財團法人國家實驗研究院國家地震工程研究中心
⁴國立中山大學海洋科學系
⁵經濟部中央地質調查所

PUBLIC HEALTH ENDGAME FOR HIV

FOR HIV We have the tools to quash the epidemic PAGE 146 HUMAN GENDMICS REACH FOR THE CLOUD Embrace a data commons to speed processing PAGE 149 COSMOLOGY CATCH A FORMING STAR How feedback slowed star formation in early Universe PAGE 189

From

http://www.washington.edu/news/2015/07/08/seafloo r-hot-springs-a-significant-source-of-iron-in-theoceans/

Since 1977... Discovery of Hydrothermal systems

Ballard (2002, WHOI)

From http://www.bluebird-

electric.net/submarines/alvin_dsv_submersible_woo ds_hole_oceongraphic_institution_us_navy.htm

From http://www.the-scientist.com/?articles.view/articleNo/32524/title/Bottom-Dwellers/

Distribution of Hydrothermal Systems

Hannington et al. (2005)

Observations of Hydrothermal vent systems

East Pacific Rise at 9°-10°N

Haymon (2001, Encyclopedia of Ocean Sciences)

http://oceanexplorer.noaa.gov/explorations/04fire/logs/a pril12/media/champagne_vent.html

LLAN 200

Hydrothermal vent ecosystems

Figure 2 An impression of hydrothermal vent area and representative associated organisms. (Modified after *FOCUS* magazine, geographic design: Mario Russo).

Figure 3 A black smoker located at 1300 m depth along the Okinawa Trough. (With permission of JAMSTEC).

Figure 5 The tubeworm *R. pachyptila* typically found at the East Pacific Rise and the Guaymas Basin.

Canganella (2006, Encyclopedia of Life Sciences)

1. Submarine Hydrothermal Minerals Exploration

Seafloor Massive Sulfide deposit

2. Effect of hydrothermal inputs for chemical balance in ocean

From http://oceanexplorer.noaa.gov/explorations/06fire/background/chemistry/media/arcvolcano.html

German and Von Damn (2003)

Factors controlling chemical compositions of vent fluids

(from http://educypedia.karadimov.info/library/blacksmoker.jpg)

Effect of phase separation

The relative order of partitioning into the brine was Ba > Sr > Ca > K > Na, Cl > Li > Br > B. [Berndt and Seyfried, 1990, GCA]

 High concentrations of Mn and Zn in high-Cl fluids, but high Fe and Cu contents in low-Cl fluids. [*James et al., 2014, GCA*]

Zn, Cd, Pb and Mn are enriched in the brine, whereas Fe, Cu, Ni, Al and Cr are partitioned into the vapor phase. [Valsami-Jones et al., 2005, JVGR]

German and Von Damn (2003)

Chemical composition of hydrothermal vent fluid in Okinawa Trough

														1	_
	Manus Basin		Izu-Bonin Arc	Mariana Trough		North Fiji Basin		Okinawa Trough		Mid-ocean ridge		Seawater			
	Vienna Woods	PAC-MANUS	Suiyo Smt.	Alice Springs	Forecast Vent	White Lady	Kaiyo	LHOS	JADE	Minami-Ensei	CLAM	EPR 21°N	Guaymas Basin	Escanaba Trough	
References	1,2	2	1	1,4	1	1	3		1,6	1	1,6	1, 4, 5	1, 5	1,4	1
Mg (mM)	0	0	0	0	0	0	0	0	0	0	~20	0	0	0	52.7
Li (mM)	0.7		0.6	0.59 to 0.83	0.3	0.20 to 0.28	0.28		2.5	5.4 to 5.8	3 to 4	0.89 to 1.48	0.63 to 1.08	1.29	0.03
K(mM)	23	89	30	31 to 48	26	10.5 to 14.5	14.5		72	49 to 51	50 to 60	23 to 26	33 to 49	40.4	9.8
Na (mM)	512	487	446	438	438	210 to 239	239		425	410 to 431		432 to 510	475 to 513	560	464
Ca (mM)	73	18	89	22	61	6.5 to 9.0	9		22	21 to 22	~20	12 to 21	27 to 42	33.4	10.2
Sr (μM)	312	102	303	72 to 90	165	30 to 43	43		94	215 to 227		65 to 97	158 to 253	209	87
⁸⁷ Sr/ ⁸⁶ Sr				0.7036	0.7038	0.7046			0.7089	0.7100		0.7030 to 0.7036	0.7052 to 0.7059	0.7099	0.7092
Cl (mM)	640	639	658	544 to 557	593	255 to 267	267		550	501 to 527	550	489 to 592	580 to 637	668 to 680	540
Rb (µM)				30		8.8 to 17	17.1		360		180 to 220	23 to 28	60 to 86	110	1.3
Cs (µM)				0.8									0.2 to 0.3	5.8 to 6.5	7.7
Mn (µM)	297	3221	587	295	300	12 to 26	26		110	88 to 94	400 to 500	700 to 1020	110 to 236	10 to 21	<0.001
Fe (µM)	77	4337	435	6.4	11	9 to 13	8.8		2.8			650 to 2430	8 to 180	0 to 10	<0.001
NH_4^+ (mM)		<0.1	<0.1	0	<0.1	-			5.0	4.6 to 4.7	8 to 12	<0.01	11 to 16	5.6	0
CO_2 (mM)			34 to 42	43.4	42.1	11.1 to 14.4	11.1		209	64 to 96	160 to 200	5.7 to 8.0	16 to 24	>9	2.3
$H_2S(mM)$			1.2 to 1.6	2.5	0.4	2.0 to 4.0	4		12.4	1.6 to 2.4	15 to 25	6.6 to 8.4	3.8 to 6.0	1.1	0
Alkalinity (mM)	-0.1	-4	-0.2	0.1 to 0.4	0.18	-0.87 to $+0.12$	- 0.87		1.9	3.0 to 3.5	10 to 20	-0.2 to -0.5	2.8 to 10.6	3.1	2.3
B(mM)	0.54	1.93	1.4	0.75 to 0.81		0.46 to 0.47	0.48		3.4	3.7 to 4.0	5 to 6	0.50 to 0.55	1.6 to 1.7	1.7 to 2.2	0.41
$\delta^{11}B(\%)$				22.5 to 29.8					- 1.0 to 2.2		7.0 to 9.2	29.0 to 32.6	16.5 to 23.2	10.1 to 11.5	39.6
This study															
B(mM)	0.53	1.47	1.52	0.73	0.64	0.44	0.55	0.47	4.8	4.4	3.9				
$\delta^{11}B(\%)$	29.7	13.5	18.5	20.2	23.2	36.1	34.5	35.3	2.6	2.5	2.9				
Cs (µM)	0.3	2.6	1.8	0.7	0.5	0.1	0.2	0.2	24	27	14				
Cs/Bx1000	0.6	1.8	1.2	1	0.8	0.2	0.4	0.4	5.1	6.1	3.7				

Yamaoka et al. (2015)

Okinawa Trough hydrothermal system

North. Middle and South Okinawa Trough hydrothermal field

KS-17-14 R/V Shinsei-maru

Yeats et al. (2017)

SCIENTIFIC REPORTS

OPEN Rapid growth of mineral deposits at artificial seafloor hydrothermal vents

Received: 27 January 2015 Accepted: 08 February 2016 Published: 25 February 2016

Tatsuo Nozaki^{1,2}, Jun-Ichiro Ishibashi³, Kazuhiko Shimada³, Toshiro Nagase⁴, Yutaro Takaya^{1,5}, Yasuhiro Kato^{1,2,6}, Shinsuke Kawagucci^{1,7,8}, Tomoo Watsuji⁷, Takazo Shibuya^{1,8}, Ryoichi Yamada⁹, Tomokazu Saruhashi¹⁰, Masanori Kyo¹⁰ & Ken Takai^{1,7,8}

Jade Site及Yonaguni Knoll IV熱液活動與礦化作用特性:

- 噴發與侵入的火成岩體以中性至酸性的安山岩或流紋岩為主,因此其硫化礦和洋脊熱液區 (玄武岩為主)同類型熱液沈澱相比,更富含具高經濟價值的金、銀、鋅、銻、砷、鉛等 金屬(Glasby and Notsu, 2003)。
- 由於海洋沈積物隱沒,使沖繩海槽的熱液比洋脊熱液更富含二氧化碳。當此一富含二氧化碳的熱液移棲至水深僅1300-1400公尺的海床表層時,可能產生沸騰作用與相分離,造成「富含二氧化碳-氯缺乏」以及「富含氯-二氧化碳缺乏」兩種類型的熱液,除了造就不同類型的礦化作用,也在海床上造成二氧化碳水合物與液態二氧化碳等特殊現象(Konno et al., 2006)。富含二氧化碳的酸性流體在沈積層中移棲時,會對礦物進行滲洗、風化,造成沈積物中的總鹼度值較一般海洋沈積物異常偏高(de Beer et al., 2013),也可能洗脫出沈積物中的金屬離子;而當富含二氧化碳的熱液逸出海床表面,與低溫的海水混合時,常會沈澱出富含稀土元素的碳酸鹽類礦物(Suzuki et al., 2008)。
- 巨厚的沈積物(南沖繩海槽約兩公里厚)對熱液成份與礦化作用有重要影響。除了移棲的 熱液對沈積物進行換質、滲洗是造成海床表面硫化礦富含鉛、砷等金屬的原因以外(Glasby and Notsu, 2003),一般咸認在沈積層內也有礦化作用在進行(Expedition 331 Scientists, 2010)。
- 值得注意的是,這些在海床上的礦化作用,具有高度局部性以及礦物學與產狀的多樣性(Suzuki et al., 2008)。

震測及地熱流調查研究團隊

反射震測與海床聲納剖面整合

海床流體活動

沈積物採樣

孔隙水取樣 (RHIZON)

海研一號

視訊導引岩心採樣系統(V-Corer)

重力岩心(Gravity Core)

視訊導引抓斗系統(TV-Grabber)

海水層柱採樣

岩心採樣

CTD錨碇設備

透光度於OR1-1139-P1、OR1-1139-A1、OR1-1164-G1、OR1-1202-VB2及 OR1-1202-VB3測站(由左至右)隨海水深度變化圖。

YK4-1 場址測線總長度26.21 km氣泡/熱液/煙囪3 處水溫異常--礦物隆堆15.15 %白色物質披覆X

5 處

生物群聚

陳信宏(2018)

與那國第四海丘 (YK4-1)

OR1-1139-A1-M1

OR1-1139航次底拖鋅一鉛一銅硫化礦石A1-D-01礦物共 生次序。綜合105-106年計畫成果(江威德,2016)

	主要成礦期	成礦晚期	後成礦期
礦物或化合物	鋅-鉛-銅 硫化物	硫化鐵、硫鹽 及二氧化矽	磷酸鹽、氧化物 硫酸鹽、碳酸鹽
閃鋅礦			
黄銅礦	107.20		
方鉛礦			
纖鋅礦	TS/ISIS		
磁黃鐵礦			
菱硫鐵礦			
白鐵礦			
黃鐵礦			
雄黃			
輝銻礦			
黝銅礦 (含銀, 砷, 鋅)			
斜硫锑鉛礦			
硫砷锑鉛礦			
硫化銀 (螺狀硫銀礦?)			
輝銻銀鉛礦 (fizélyite)			
油雌黄			
雌黃			
硫酸鉛礦			
番白石			
白鉛礦			
氯磷鉛礦			
砷锑鉛水合鐵氧化物			
重晶石			
苦螨礦 (膠壯 今銀 锑)			
只 如 , , , , , , , , , , , , , , , , , ,			1

and the same in this will all and the same first and the same of the

122°35'E

122°40'E

5m

100m

測線總長度	27.09 km
氣泡/熱液/煙囪	2 處
水溫異常	\checkmark
礦物隆堆	2.07%
白色物質披覆	\checkmark
生物群聚	1 處
貽貝殘骸	X

PFZ 場址

氣泡(無)

陳信宏(2018)

OR1-1164-P1-T-CTD Mooring

S. Andy

Glass Ball Acoustic Release

S/N2345

Glass Ball

20m wire

Acoustic Release

貴儀中心 何文華 技術員設計

201705-OR1-SU

複管岩心沈積物間隙中氦同位素比值

平均西太平洋島弧氦同位素平均值6.4 R_A (Poreda and Craig, 1989)

重力岩心沉積物微量元素濃度垂直剖面變化

蓬萊斷層帶

OR1-1139-P1-T

OR1-1164-P1-T-TVG測站鐵一鋅一鉛硫化礦石標本及反光顯微影像。(a)具有管狀通 道之礦石;(b)具有硬石膏層之礦石;(c)礦石通道中以磁黃鐵礦(Po)板狀晶體構 成片架(cardhouse)組織,另有富鐵閃鋅礦(Sp)和方鉛礦(Gn)蔓生其上;(d)礦石通道 外緣由塊狀硫化物組成,方鐵黃銅礦(Icb)為重要礦物之一(江威德,2017)

石林隆堆(G1)

拖作業航跡。

石林隆堆

GLM 場址

測線總長度	18.07 km
氣泡/熱液/煙囪	6 處
水溫異常	\checkmark
礦物隆堆	7.03 %
白色物質披覆	\checkmark
生物群聚	1 處
貽貝殘骸	Х

陳信宏(2018)

貽貝殘骸(無)

重力岩心間隙水之元素濃度及總鹼度垂直剖面變化

140

沉積物碳化學:G1站年間變異

2017:顯著碳化學異常(液態CO₂浸染) 2018:與本年度其他站位相似

各測站重力岩心沈積物微量元素濃度垂直剖面變化

→ 1139-P1-GC → 1139-A6-GC → 1202-VB2-GC2
 → 1139-A2-GC → 1164-P1-T-GC → 1202-VB2-GC1
 → 1139-A3-GC → 1164-G1-GC → 1202-VB3-GC
 → 1139-A4-GC → 1202-G1-GC

0	1139-P1	0	1139-A6	×	1164-G2	•	1202-VB1
0	1139-A2	×	1164-P1-B	×	1164-G1	•	1202-VB2
0	1139-A3	×	1164-P1-A	•	1202-G1	0	1202-VB3
0	1139-A4	×	1164-P1-T				

綜合三年所分析之岩心沈積物樣本As、Bi、 Cd、Cu、Pb、Zn、Sn、S、Mo、Sb、Sn、 In、Se、Tl、Au與Ag具有高度相關

底拖網於石林隆堆站位所取得之岩岩樣

石林隆堆

NCKU WTJ 2018

OR1-1202-G1測站底拖硫化金屬礦石之礦物共生次 序(江威德,2018)。4C、5C及6C為磁黃鐵礦結構 型;VLS、LS和IS分別為閃鋅礦含鐵量及礦物組合所 指示之極低度、低度和中度硫化型熱液沉澱條件。

生成礦物	早期
硬石膏	
磁黃鐵礦	
斜方砷鐵礦/砷黃鐵礦	
鋅-銅-鐵硫化物中間固溶體	
方鐵黃銅礦	380-410°C
閃鋅礦/纖鋅礦	VLS. LS (Fe-rich)
方鉛礦	
黃銅礦	
鉍熔體(鉍-硫熔體)	
自然鉍	—
自然金	primary secondary
黃鐵礦	<u>IS</u>
白鐵礦	
輝鉍礦,Bi ₂ S ₃	
高鉍硫化物, BiS or Bi₄S ₃	? ?
膠狀組織黃鐵礦	
輝銻礦	
雄黃	
纖鐵礦	
氯鉍礦,BiOCl	
滑石/膨潤石	
重晶石	
石膏	
氯磷鉛礦, Pb₅(PO₄)₃Cl	

棉花海山(VB2)

棉花海山(VB2)調查區前人研究顯 示具有熱液活動潛能。圖中紅色點為 JAMSTEC站位(Lee, 2002), 白色 點為大陸於今年發表之站點(Zhang et al., 2018) •

本航次利用複管岩心攝影系統自棉花 海山(VB2)火山往南,然後轉東, 岩塊、熱液徵兆及生物群聚(紅色點,圓點為重力岩心採樣站位。 USBL定位)。圖中藍色線為海研一 號航跡,白色線為底拖作業期間海研 一號航跡。

棉花海山(VB2) 調查區各類樣本採 樣位置。藍色方點為CTD及水樣站位, 再轉西南進行勘測,沿途發現火山岩 紅色圓點為複管岩心採樣站位,藍色

MHV 場址

測線總長度	64.89 km
氣泡/熱液/煙囪	3 處
水溫異常	\checkmark
礦物隆堆	25.09 %
白色物質披覆	\checkmark
生物群聚	11 處
貽貝殘骸	\checkmark
SUBJOY/STATURATO (SMTOR) STDY PERSING ELEPTED OF ROUND INFOLMED ELEPTED OF AUTOOD SUBJOY ELEPTED OF THE OFFICE OF A STATUS OF A STATUS OF A STATUS THE OFFICE OF A STATUS OF	
2018/07/26/051656817/(GMT-0) SHIP N2513:978 : E122134.840 USBL N254:020 : E122134872' Temperature 3.80 °C, 4.67 °C ALTITUDE 05 389 m DEPTH11551393 m	

大量生物群聚

陳信宏(2018)

貽貝殘骸

OR1-1202-G1、OR1-1205-VB2測站之 安裝於錨碇架腳的地熱探針、於架 頂的傾斜探針及CTD溫度探針時序記 錄比對圖。

FDV-1 場址

冽 縁総	7.03 KIII
氣泡/熱液/煙囪	3 處
水溫異常	\checkmark
礦物隆堆	63.73 %
白色物質披覆	X
生物群聚	1處
貽貝殘骸	\checkmark

2018/07/24 00:10:29:000 (9M1+0) SHIP N24*54.135* E122*32:514 USBL N24*54.155* E122*32:528* Temperature 3.96 °C, 4.66 °C ALTITUDE 06.985 m DEPTH 1158.058 m

陳信宏(2018)

TVG 採樣(無) 煙囪/熱液(無) 2018/07/28 02:03:05.488 (GMT+0) 色物質披覆 白

FDV-2	場址
測線總長度	14.62 km
氣泡/熱液/煙囪	Х
水溫異常	\checkmark
礦物隆堆	11.76 %
白色物質披覆	\checkmark
生物群聚	1 處
貽貝殘骸	Х

陳信宏(2018)

礦物隆堆

貽貝殘骸(無)

第四與那國海丘鄰近海域熱液礦化之 重要特性綜整(江威德,2018)

