

Kinetic, Mechanical, and Fluid Flow Models for the Behavior of the Subduction Interface based on Field Observations

Makimine

Donald M. Fisher, Andrew Smye, John Hooker, Chris Marone Penn State University Asuka Yamaguchi University of Tokyo Peter van Keken Carnegie

Role of Geochemistry (P-T) on slip behavior

- Subduction zones show a range of slip behavior as a function of depth and for convergent margins with different thermal structure
- In this talk, we investigate the role of geochemical processes of healing on subduction zone slip behavior (updip end of the seismogenic zone, size distributions of earthquakes)

Outline

- Subduction zone dynamics and Frictional mechanics-theory and experiment
- Observations of ancient fault zones-Silica Kinetics Model
- Population balance algorithm and numerical mechanical model for interface
- Size distributions of earthquakes in natural systems
- Fluid production and fluid flow

Bangs et al. (2004)

EQ clustering and Supercycles

Philibosian et al., 2017

Goldfinger et al. 2013

The Seismogenic Zone

Moore and Saffer (2001)

Asperity Paradigm

Thatcher, 1990

Velocity Dependence and Healing

Marone et al., 2006

Rate state friction mechanics:

Stable Slip- K > K_c Creep
Unstable Slip- K < K_c EQ's
Slow EQs-Instabilities that stabilize

Outline

- Subduction zone dynamics and Frictional mechanics-theory and experiment
- Observations of ancient fault zones-Silica Kinetics Model
- Population balance algorithm and numerical mechanical model for interface
- Size distributions of earthquakes in natural systems
- Fluid production and fluid flow

A different view of "asperities"

- Patches of the interface heal in response to mineral redistribution as a stochastic process that reflects roughness in the composition of underthrusting materials.
- Healing during the interseismic period occurs at rates determined by mineral kinetics.
- Hotter margins are greater coupled than cold margins
- "Asperity" formation is fundamentally a geochemical process.

Kodiak Accretionary Complex

- Subduction since the Jurassic
- One ridge-trench encounter
- Accreted oceanic lithologies
- Northwest to southeast, oldest to youngest
- Boundaries are northwest dipping thrusts

Lower Shimanto Belt

- Accreted oceanic lithologies
- Northwest to southeast, oldest to youngest
- Conditions of faulting span the T's of the seismogenic zone

Melanges of the Northern Shimanto Belt

Mugi lower section

Mugi Upper Section

Makimine melange

Ghost Rocks Melange Fisher and Byrne, 1987

Rowe et al. 2011

Variable behavior along the subduction interface Pseud

Pseudotachylite *Ikesawa* et al., 2003 *Rowe et al., 2005 Ujiie et al., 2007*

 Slow strain rates- Wide fault zone (10's-100s of m) of melange dominated by cracking, distributed simple shear on scaly slip surfaces, mineral redistribution. Linear Viscous Flow-Low effective stress

 Fast strain rates-Narrow (1-15 m) of ultracataclasite along sharp faults, typically at the top of the melange zone. Pseudotachylite. Fisher et al., in review

An aside: Are the narrow cataclastic fault zones with pseudotachylite related to reactivation in the prism, or to slip on the plate interface

Veins and Scaly fabrics

Slip surfaces-Scaly Fabric

Fisher et al., in review^a

Crack Seal Microstructures

Crack Seal Microstructures-syntaxial

Crack Seal Microstructures-syntaxial

100 μm Uganik Thrust

Uganik Thrust

Uganik Thrust

Uganik Thrust

40 μ

40 m

Crack Seal Microstructures-syntaxial

Uganik Thrust Fault Zone

Plan in a string

1 cm

σ₁ orientations-Pervasive high P_f Uganik Thrust

Scaly fabrics are Si depletion zones

Geochemical reactions

Fisher et al., 2019b

Model Geometry

Driving force for Silica Redistribution

Fisher and Brantley, 1992 Fisher and Brantley, 2014 Ujiie et al., 2018 Renard et al., 2001

Fluid Pressure Drop

Differences in Mean stress related to Strength Contrast

Fisher et al., 2019b

Crack Sealing Times

Scenario 1: P-drop

Downdip and Global variability

Diffusion vs. Interface control

Fisher et al., 2019b

Gunderson et al., 2002

Penniston-Dorland et al., 2015

Syracuse et al., 2010

Take home from the kinetics model

- Si redistribution due to chemical potential gradients driven by local σ_n differences can seal cracks at rates relevant to plate boundary healing during the seismic cycle (<10³ years)
 Natural rates are likely to be much
- faster (quartz-phyllosilicate mixtures, low-T reactions)
- Rates are likely to vary between convergent margins with different thermal structures

Outline

- Subduction zone dynamics and Frictional mechanics-theory and experiment
- Observations of ancient fault zones-Silica Kinetics Model
- Population balance algorithm and numerical mechanical model for interface
- Size distributions of earthquakes in natural systems
- Fluid production and fluid flow

Cellular Block-Slider Model

Fisher et al., 2019a

A population balance algorithm for asperities

Birth (nucleation) Growth Death (failure)

Fisher et al., 2019a

No Asperities

Fisher et al., 2019a

Asperity nucleation independent of T

Fisher et al., 2019a Thermally activated asperity nucleation

Time Series of Slip Deficit

Sensitivity Analyses

Outline

- Subduction zone dynamics and Frictional mechanics-theory and experiment
- Observations of ancient fault zones-Silica Kinetics Model
- Population balance algorithm and numerical mechanical model for interface
- Size distributions of earthquakes in natural systems
- Fluid production and fluid flow

GCMT Global Dataset

Model versus Natural Earthquake Size Distributions

Oakley et al., in prep.

b-value vs. temperature

Outline

- Subduction zone dynamics and Frictional mechanics-theory and experiment
- Observations of ancient fault zones-Silica Kinetics Model
- Population balance algorithm and numerical mechanical model for interface
- Size distributions of earthquakes in natural systems
- Fluid production and fluid flow

Fluid Flow Cellular Automaton

Hooker and Fisher, in prep.

Power-law fit quality

Hooker and Fisher, in prep.

Effect of fluid system on earthquake size distributions

Conclusions

- The subduction interface shows evidence for variable slip behaviorimportant involvement of mineral redistribution.
- Silica kinetics modeling suggest healing at rates that can impact slip on the interface.
- A numerical block-slider model for the interface evaluates a population balance equation for asperity formation based on stochastic healing by silica redistribution.
- An exponential temperature-dependent rate law for nucleation and strengthening, based on Arrhenius-equation silica kinetics, leads to: 1) supercycles of buildup and release of elastic strain, 2) a temperaturebased up-dip limit to genesis of large earthquakes, and 3) a power law size distribution of earthquakes that varies as a function of temperature.
- Slip behavior on the Subduction interface is modulated by feedbacks between geochemical processes and the fluid flow system