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Introduction

Inverse problems everyday!

• Medical imaging
• Nondestructive testing
• Radar
• Seismology exploration
• Remote sensing
• Forensics
• and much more....
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General setup

Consider
y = G(p),

where {
p ∈ X (parameter space),

y ∈ Y (data or observation space),

and
G : X → Y (parameter to data map).

X and Y are usually infinite dimensions and G may depend on
p linearly or nonlinearly. In many cases, G are given by
solutions of PDEs.

Forward (or direct) problems: given p, determine y .

Inverse problems: given y , determine p.

It is quite often that finding G−1 is impossible.
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CT Scan

The Nobel Prize in Physiology or Medicine 1979 was awarded
jointly to Allan M. Cormack and Godfrey N. Hounsfield "for the
development of computer assisted tomography"
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X-ray transform

ℓ is the red straight line.

Iout = Iin exp(−
∫
ℓ f (x)ds)

Iout, Iin are the numbers of photons at the source and the
receiver

f (x) is the optical density of the medium
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X-ray transform

So we can compute the line integral of f (x) along any X -ray by
measuring the numbers of photons at the source and the
receiver. The question now is to determine f (x) by all its line
integrals. In other words, one would like to invert the map:

R : f (x) → Rf (ℓ) =
∫
ℓ
f (x)ds,

where Rf is known to be the Radon transform of f in R2.
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Reconstruction formula

We can write

Rf (ρ, θ) =
∫ ∞

−∞
f (ρ cos θ − s sin θ, ρ sin θ + s cos θ)ds.

Let point P = (x , y), define

F̄P(q) =
1

2π

∫ 2π

0
Rf (x cos θ + y sin θ + q, θ)dθ,

then

f (P) = −1
π

∫ ∞

0

dF̄P(q)
q

.

This is the famous inversion formula derived by Radon in 1917.
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Ignored result

Johann Radon (1887-1956)

Unaware of Radon’s result, Cormack reconsidered this
reconstruction problem and published two papers in 1963,
1964. It was not until 1970 that Cormack learned that the
problem has been solved by Radon.
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Interdisciplinary topic

�� ��Integral geometry
↑�� ��Radon transform
↓�� ��Medical imaging, Geophysical prospecting...
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Travel time tomography

To determine the structure of the core by measuring the travel
time. This problem can be recasted into a geometry problem.
One of them is the problem of determining the Riemannian
metric from the lengths of geodesics joining points in the
boundary. However, in general, this problem does not have a
unique solution.
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EIT or ERT

Electrical impedance tompgraphy

Electrical resistivity tompgraphy
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Mathematical setup

The boundary value problem:{
∇ · (γ∇u) = 0 in Ω,

u = f on ∂Ω,

or 
∇ · (γ∇u) = 0 in Ω,

γ
∂u
∂ν

= g on ∂Ω,

∫
∂Ω

gdσ = 0,

where γ > 0 is the conductivity function (the inverse of the
resistivity), f is the voltage potential on the boundary, and g is
the current on the boundary. Here ν is the unit outer normal of
∂Ω.
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Inverse problem

The problem is to determine γ from the collection of {f , γ ∂u
∂ν |∂Ω}

(voltage-current pairs) or {g,u|∂Ω} (current-voltage pairs). In
the mathematical term: determine γ from

Λγ : voltage → current,Λγ f = γ
∂u
∂ν

|∂Ω (Dirichlet-to-Neumann map)

or

Nγ : current → voltage,Nγg = u|∂Ω (Neumann-to-Dirichlet map).

Basic mathematical questions:

• Uniqueness: Λγ1 = Λγ2 ⇒ γ1 = γ2

• Reconstruction: reconstruction formula of determining γ

from Λγ

• Stability: how error of Λγ affects γ

13
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Pioneer

Alberto Calderón (1920-1988)

He studied civil engineering at the University of Buenos Aires
and graduated in 1947. He worked at a geophysics research
lab at YPF (the state-owned petroleum company) for a few
years.
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Paper

A.P. Calderón, ON AN INVERSE BOUNDARY VALUE
PROBLEM, in Seminar on Numerical Analysis and its
Applications to Continuum Physics, Rio de Janeiro, Editors
W.H. Meyer and M.A. Raupp, Sociedade Brasileira de
Matematica, (1980). 65-73.

Alberto Grünbaum

15



Paper

A.P. Calderón, ON AN INVERSE BOUNDARY VALUE
PROBLEM, in Seminar on Numerical Analysis and its
Applications to Continuum Physics, Rio de Janeiro, Editors
W.H. Meyer and M.A. Raupp, Sociedade Brasileira de
Matematica, (1980). 65-73.

Alberto Grünbaum

15



Calderón’s approach

Although the boundary value problem is linear in γ, the problem
of determining γ from Λγ is nonlinear.

Idea: linearization

Consider the nonlinear function y = F (x). Assume that
y0 = F (x0). Then Taylor’s formula:

y − y0 ≈ ∇F (x0)(x − x0),

i.e.,
x ≈ x0 + (∇F (x0))

−1(y − y0)

provided ∇F (x0) is invertible. Also, if x1, x2 are near x0 and
∇F (x0) is invertible, then F (x1) = F (x2) ⇒ x1 = x2.
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Energy

Green’s identity:∫
∂Ω

Λγ f · hdσ =

∫
Ω
γu · vdx := Qγ(f ,h),

where v |∂Ω = h. You can think of Qγ as the energy and

Λγ ⇔ Qγ .

Then for γ = 1 + γ′

dQ(1)(γ′) =
∫
Ω
γ′∇u′ · ∇v ′dx ,

where ∆u′ = ∆v ′ = 0 in Ω, i.e., harmonic functions. Plugging
suitable harmonic functions into this formula will give us some
information of γ′, a perturbation of the identity conductivity.
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Global uniqueness

The linearized map dQ(1) will not provide us any uniqueness
result even when dQ(1) is "invertible".

John Sylvester Gunther Uhlmann

Proved the uniqueness in 1987: Λγ1 = Λγ2 ⇒ γ1 = γ2. They
introduced a special class of solutions called complex
geometric optics solutions in the proof. These solutions are
also useful in designing a reconstruction algorithm (in theory).
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Ill-posedness

EIT problem is ill-posed in the sense of Hadamard.

Jacques Hadamard (1865-1963)

Hadamard defined that a problem is well-posed if it has
existence, uniqueness, and continuous dependence (solution
depends on data or on coefficients continuously).
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Continuous dependence

Who cares about the existence and uniqueness?

Mathematicians!

The continuous dependence (or stability) is more serious in the
applications.

In fact, the usual sense of continuous dependence does not
hold. That is, let (X , | · |X ) be the space of γ and (Y , | · |Y ) be the
space of Λγ , where | · |X and | · |Y are distance functions in X
and Y , respectively. One cannot expect that for any γ1, γ2 ∈ X

error(Λγ1 ,Λγ2) → 0 ⇒ error(γ1, γ2) → 0,

where {
error(Λγ1 ,Λγ2) = |Λγ1 − Λγ2 |Y ,
error(γ1, γ2) = |γ1 − γ2|X .
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Stable estimate

But we can find a subspace E ⊂ X such that if γ1, γ2 ∈ E such
that it holds

error(Λγ1 ,Λγ2) → 0 ⇒ error(γ1, γ2) → 0

(closely related to the regularization).

In fact, it was proved by Alessandrini that if γ1, γ2 ∈ E for some
suitable E ⊂ X :

error(γ1, γ2) ≤ Cω(ε), (1)

where ε = error(Λγ1 ,Λγ2), C is some positive constant, and

ω(ε) ≤ | log ε|−η, 0 < η < 1. (logarithmically stable)

This estimate cannot be improved in general.
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Difficulty

Estimate (1) implies that even a small error in the measurement
will result in high inaccuracy in the conductivity.

For example, we take η = 1, and ε = 10−10, the error in the
determination of the conductivity error(γ1, γ2) can be large as
10−1.

How to improve the stability is probably the most challenging
problem in EIT or ERT.
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Better stabilities

Piecewise constant conductivity: γ =
∑J

j=1 cj1Dj , where 1Dj is
he characteristic function of the region Dj and Ω = ∪J

j=1Dj .
Assume that {Dj}J

j=1 are known, but {cj}J
j=1 are unknown. The

determination of {cj}J
j=1 by the measurement Λγ is almost

linearly stable.

However, if {Dj}J
j=1 are unknown, then the determination is still

logarithmically stable!
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Inclusion problem

Related to the case of piecewise conductivity, we consider the
following problem: let γ = γ01Ω\D + γ11D. Assume that γ0 is
known, but γ1 is unknown. You can regard D as the region of
an abnormality, e.g., tumor.

The problem is to determine D from the measurement Λγ .

This problem is again logarithmically stable. However, we can
observe and also prove mathematically that the reconstruction
of D is more stable when D is near the boundary.
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Stationary equations

We can consider the Helmholtz type equation

∆u + k2u + qu = 0 in Ω,

where k is the wave number and q is a potential function. We
can study the problem of determining q by the measurements

{u|∂Ω,
∂u
∂ν

|∂Ω}.

For this case, one can observe that the stability estimate tends
to a Hölder type as k increases. That is,

error(q1,q2) ≤ C(k)(error(Λq1 ,Λq2))
α + error term︸ ︷︷ ︸

↓0 as k→∞

,

where α ∈ (0,1). Stability is increasing if we are prospecting
the unknown by the high frequency waves.
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Wave equation

Consider the initial-boundary value problem for the wave
equation: 

∂2
ttv −∆v + qv = 0 (x , t) ∈ Ω× (0,T ),

v(0, x) = 0, ∂tv(0, x) = 0 x ∈ Ω,

v(t , x) = f , (x , t) ∈ ∂Ω× (0,T ).

We can define the measurement Λh
q:

Λh
q(f ) =

∂v
∂ν

∣∣∣
∂Ω×(0,T )

In this problem, the following stability estimate holds

error(q1,q2) ≤ C(error(Λh
q1
,Λh

q2
))β, β ∈ (0,1).
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Finite speed of propagation

When k is large, the Helmholtz equation behaves like the wave
equation.

The better stability for the wave equation is probably due to the
property of finite propagation speed.

For the elliptic (e.g., ∆u = 0) or parabolic equations (e.g.
∂u −∆u = 0), the speed of propagation is infinite.
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Numerical simulations

Determine p from the observation y in y = G(p). Try to solve

p = argmin
p∈X

∥y − G(p)∥2
Y .

It looks quite straightforward and easy!

Problems:

• Inverse problem is ill-posed. Small perturbations of data
will lead to large errors in the determination of p. That is,
the numerically determined solution is not stable.

• It is difficult to apply a Newton-type scheme since the
derivative of G is quite often hard to compute.
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Regularization

Solve (Tikhonov’s regularization)

p = argmin
p∈X

{
∥y − G(p)∥2

Y + α∥p∥2
E

}
E ⊂ X : compact subspace

α: parameter

Introducing a regularizer can stabilize the problem, but G is
most likely not convex in p. There are many minimizers. Also,
the choice of α is tricky.

29



Statistical viewpoint

In practice, there exist measurement errors. Thus, it is more
reasonable to consider

y = G(p) + ξ,

where ξ is the noise.

Precisely, let X , Y be separable Hilbert spaces and G : X → Y
be a Borel measurable map. Normally, ξ is a centered
Gaussian on Y , i.e. ξ ∼ N (0, Γ), where Γ the covariance
operator which is a positive operator of trace class.

We put a prior on p, i.e. p is a random element on X . It is
common to choose p ∼ N (p̄,C), the Gaussian with mean p̄
and covariance C.
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Bayes method

P(p|y)︸ ︷︷ ︸
posterior

∝ P(y |p)︸ ︷︷ ︸
likelihood

P(p)︸︷︷︸
prior

In most cases, we can express

P(p|y) ∝ exp(−Φ(p; y)).

Given observation y , −Φ(·; y) is called the log likelihood.

For the case of ξ ∼ N (0, Γ) and u ∼ N (p̄,C),

Φ(p; y) =
1
2
∥Γ−1/2(y − G(p))∥2

Y +
1
2
∥C−1/2(p − p̄)∥2

X
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MLE vs MAP

Maximum likelihood estimation (MLE):

p̂MLE = argmin
p∈X

∥Γ−1/2(y − G(p))∥2
Y .

Minimization without regularization

Maximum a posterior estimation (MAP):

p̂MAP = argmin
p∈X

{1
2
∥Γ−1/2(y − G(p))∥2

Y +
1
2
∥C−1/2(p − p̄)∥2

X

}
.

Minimization with regularization

Both estimations provide point estimators.
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Posterior distribution

Instead of the minimization technique, we can use the posterior
distribution to make inference of the parameter.

Let Π(·|Y ) be the posterior distribution. The expectation
E[Π(·|Y )] is a natural point estimator of p. Formally

E[Π(·|Y )] =

∫
X

p dΠ(p|Y ).

This integral can be rigorously defined in Bochner’s sense. To
be useful, we need to find an effective way to approximate it.

Monte Carlo Integration

Let p(1), · · · ,p(n) be sampled independenlty from Π(·|Y ). Then

1
n

n∑
k=1

p(k) → E[Π(·|Y )]

(Law of Large Number)
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MCMC (sampling)

MCMC algorithms are the most popular and powerful methods
to sample probability distributions. However, in dealing with
PDE inverse problems, the posteriors in general lie in the
infinite dimensional function spaces, it becomes a challenging
question to sample such posteriors effectively.

The preconditioned Crank-Nicolson algorithm (pCN) is a
method developed to sample distributions at high dimensions.
The pCN method is a Metropolis-type algorithm. Most
importantly, the pCN algorithm has dimension-indenpendent
sampling efficiency.
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Ensemble Kalman filter

Kalman filter method can also be used to study inverse
problems. As before, let G : X → Y be the forward map

y = G(q).

Let Z = X × Y and the map Θ : Z → Z defined by

Θ(z) =

(
q

G(q)

)
for z =

(
q
p

)
, where p ∈ Y .

We consider the artificial dynamics given by

zℓ+1 = Θ(zℓ), ℓ = 0,1,2, · · · . (2)
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Associated to the dynamical equation is the observation
equation

yℓ+1 = Hzℓ+1 + ηℓ+1, (3)

where H : Z → Y is the projection operator given by H =

(
0
I

)
and η1, η2, · · · are independent Gaussian random elements on
Y .

The dynamical system (2) gives rises to a prediction step and
the observation equation (3) provides a correction step.
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EnKF : initial ensemble

Initial ensemble: {z(j)
0 }J

j=1 are determined by the prior
knowledge of q. Let µ0 be the prior distribution of q, the initial
ensemble consists of {q(j)

0 }J
j=1, which are i.i.d. samples of µ0.

We now define the space of initial ensemble

A = {q(j)
0 }J

j=1.

Alternatively, if µ0 ∼ N (q̄,C), we can consider q(j)
0 = q̄ +

√
αjζj ,

j ≤ J, where (αj , ζj) are eigenpairs of C. This is known as
Karhunen-Loéve basis.

Assume that the observational data y is given by the "ground
truth" q† ∈ X with a measurement noise, i.e.,

y = G(q†) + η†

where η† denotes the measurement noise.
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Algorithm

Algorithm. Iterative EnKF.

Let the initial ensemble {q(j)
0 }J

j=1 have been chosen. Denote

p(j)
0 = G(q(j)

0 ) and z(j)
0 =

(
q(j)

0

p(j)
0

)
. For ℓ = 0,1,2, · · · .

(1) Prediction step. Propagate the ensemble particles by the
dynamical system (2):

ẑ(j)
ℓ+1 = Θ(z(j)

ℓ ), j = 1, · · · , J. (4)

Sample mean: zℓ+1 = 1
J
∑J

j=1 ẑ(j)
ℓ+1

Sample covariance:

Cℓ+1 =
1

J − 1

J∑
j=1

ẑ(j)
ℓ+1(ẑ

(j)
ℓ+1)

T − zℓ+1(zℓ+1)
T .
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(2) Analysis step. Here we would like to update the ensemble
particles that were obtained in (1) by the observational
data. We first define the Kalman gain Kℓ by

Kℓ+1 = Cℓ+1H∗(HCℓ+1H∗ + Γ)−1,

where H∗ = (0, IN). Then each ensemble particle is
updated as follows:

z(j)
ℓ+1 =ẑ(j)

ℓ+1 + Kℓ+1(y
(j)
ℓ+1 − Hẑ(j)

ℓ+1)

=(I − Kℓ+1H)ẑ(j)
ℓ+1 + Kℓ+1y (j)

ℓ+1,

where
y (j)
ℓ+1 = y + η

(j)
ℓ+1,

where η
(j)
ℓ+1 are i.i.d. with η

(j)
ℓ+1 ∼ ηℓ+1 for j = 1, · · · , J.
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(3) Compute the updated sample mean

qℓ+1 =
1
J

J∑
j=1

H⊥z(j)
ℓ+1,

where H⊥ = (I,0).

Subspace invariance property: {q(j)
ℓ }J

j=1 ∈ A for all ℓ ∈ N.

Interesting questions:

• Choice of initial ensemble

• Stopping criteria

• Convergence theory
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Thank you for your attention
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