

Particle Dynamics on the **River-dominated Continental Shelf:** The Coupling between Physics and **Biogeochemistry**

ES&AG, NCU. 22nd Dec., 2023

Speaker: Jay Lee RCEC, Academia Sinica

• The routing system from its Source to Sink (S2S).

Introduction

• The Land-Sea continuum transport system e.g., the particle could be a TRACER!!!!

Introduction

Study Area

Estuarine, Coastal and Shelf Science Volume 194, 15 July 2017, Pages 252-262

Dispersal of the Pearl River plume over continental shelf in summer

Zhaoyun Chen ^{a b}, Wenping Gong ^{a b}, Huayang Cai ^{a b}, Yunzhen Chen ^{a b}, Heng Zhang ^{a b c} 🙁 🖂

I: East Coastal Jet

Tabone et al., 2015

2 II: East Offshore Spreading

III: West Alongshore Spreading

IV: Symmetrical Alongshore Spreading

- V: Offshore Bulge Spreading
 - VI: East Isolated Patch

VII: East Offshore Branch

VIII: Offshore Filaments

Wind-driven currents and upwellings

Wind-driven upwelling (Lower water column) \bullet

Nonlinear internal waves (NIWs) ullet

- Study Area
- Materials & Methods
- Results Discussion
- Conclusion

- Scientific Question & Hypotheses
 - What are the associated physical processes to transport those particles?
 - Wind-driven current?
 - Upwelling?
 - NIWs?
 - What are the SPs on the inner shelf?
 - Terrestrial or Marine sourced?
 - Physiochemical characteristics (e.g., size)?

CTD Profiling (hourly)

- Sal, Temp., Turb., Fluor.
- SF: 0.04 Sec *SF: Sampling Frequency
- Lowering rate: <0.5 m/s
- Averaged to 0.2 m/record

LISST Profiling

- Volume concentration
- 32 size groups from 2.5-500 µm
- Classified into 63, 63-153, >153 μm

Prof. C.-T. A. Chen's lab Prof. Y.-S. Lin's lab

Water Mass Properties

- SiO_4 , PO_3 , NO_2 , NO_3
- SF: 3 hours *SF: Sampling Frequency

Particle Characteristics

- Chl-a, SSC, POC, PN, $\delta^{13}C$
- SF: 3 hours *SF: Sampling Frequency
- SSC (63, 63-153, >153 μm)

 Journal homepage: www.elsevier.com/locate/ejrh

 Influence factors and mechanisms of 2015–2016 extreme flood in

 Pearl River Basin based on the WSDI from GRACE

 Lin Zhang^a, Yunzhong Shen^{a,*}, Qiujie Chen^a, Fengwei Wang^b

 High River Discharge!

 6

Contents lists available at ScienceDirect

Journal of Hydrology: Regional Studies

HYDROLOGY:

 (X_2, Y_2)

Introduction Study Area	• Flow Fields (Quantify				$\frac{fy}{1+O_1}$	Harmonio V _{tidal} (1	$c \text{ Analys} \\ t) = V_p ($ $c \text{ Energy} \\ ER = -$	$f(t) = \sum_{k=1}^{m} f(t)$ $F(t) = \sum_{k=1}^{m} f(t)$ $F(t) = \sum_{k=1}^{m} f(t)$ $F(t) = \sum_{k=1}^{m} f(t)$	$\alpha_{k}(\cos \omega_{k}t-\theta_{k}) \qquad \qquad$		
Materials & Methods	Station June (ZHJ1)	Dep. (m) 16.6	K ₁ (I Major 0.06	m/s) Minor 0.00	M ₂ (Major 0.18	(m/s) Minor 0.01	F 0.19	ER (%) 38.9	 Energy Ratio Nontidal flow dominated at ZHJ1 & ZHJ2 The tidal flow became stronger in the lower layers at ZHJ2 		
Results Discussion &	July (ZHJ2)	1 7 14	0.16 0.19 0.02	0.09 0.13 0	0.11 0.11 0.07	0.01 0.01 0.01	1.7 2.1 0.3	17.3 20.4 12.0	 A provide an 2 model Form Numer Mixed tide (K₁ & M₂) Mixed tide (K₁ & M₂) MV-SE at ZHJ1 (M2 dominated) NE-SW (K₁) and NW-SE (M₂) at ZHJ2 		
Conclusion		21 28 34	0.07 0.07 0.05	0.06 0.06 0.04	0.09 0.09 0.08	0.01 0.01 0	1.0 1.0 0.8	36.7 49.3 44.3			

06:00 07/29

Introduction

Study Area

Discussion

Ø

Conclusion

Study Area

SPs Characteristics

- **Upper Water Column**
- Diluted water regime (ZRP)
- Low salinity (tidal modulation)
- Low light transmission (< 50 %)</p>
- > High fluorescence (> 2 μ g L⁻¹)
- **Lower Water Column**
- Cold offshore regime
- Bottom nepheloid layer (< 70 %)</p>
- Low fluorescence

Surface

- Diurnal var. in VC
- ➤ VC dominated by >153 µm
- > SSC dominated in <63 μ m
- Lighter SPs

Bottom

- ➤ High-frequency var. in VC
- \succ VC dominated by <153 µm
- ➤ SSC dominated by <63 µm</p>
- Heavier SPs

Results Discussion &

Materials & Methods

Introduction

Qo

Empirical Orthogonal Function ullet

• EOF (Surface; 3 m)

Degraded; Low Den.

Sal

28

• EOF (Bottom)

