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What’s in common

’ Fault surface

e Hiding in somewhere
e Storing energies for next attacks (earthquakes)
e These attacks could not be avoided

e These attacks could not be predicated

e Never be the end
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Approaching with multidisciplinary methods



What’s in common

’ Fault surfa/lce ‘
| |
e Field survey: to quantify the architecture of fault zone
e Rock deformation experiments: to reproduce seismic slip

condition (rock friction, fracture energy and frictional energy)
e Microstructural studies: to infer the physico-chemical
processes during coseismic deformation in nature and
experiments
e Seismological, geophysical and remote-sensed (GPS, InNSAR)
methods: to retrieve key parameters related to EQ source
(seismic moment, static stress drop, radiated energy)
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What is rock friction?

u=F/N
N
l u=(F/A)/ (N/A) =t/ on

A = Nominal area of contact

“

1 = friction coefficient




At slow slip rates (< 1 mm/s) and for short
displacement (< 1 cm) rock friction (u) is 0.6-0.8
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At slow slip rates (< 1 mm/s) and for short
displacement (< 1 cm) rock friction (u) is 0.6-0.8

n=1/on

I | 1 |

But during earthquakes
e Slip rate of 0.1-5 m/s (or ~ 1 m/s)

e Displacement up to 10 m
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Under these extreme deformation conditions,
u could be < 0.2

L=T/0On 5

—

Di Toro et al., Nature, 2011
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High Velocity Rock Friction Experiments
(HVRFE) performed at seismic slip rates
(0.1-10 m/s) may allow the:

Determination of dynamic friction (and its
evolution) during seismic slip

Investigation of the physico-chemical
processes occurring during simulated faulting

Recognition of mineralogical and
microstructural indicators within exhumed (or
active) fault zones

ldentification of fault weakening mechanisms



SHIVA (Slow to High Velocity Apparatus)

| INGV (designed by Italian Team at INGV)

c, <70 MPa

v=1um/s-9m/s

d = infinite

Power 270 kW

Torque 1100 Nm

e (data for 50/30 mm
L " ext/int diameter: with

- 25 mm diam., we can

go up to 100 MPa)

Di Toro et al., 2010



SHIVA (Slow to High Velocity Apparatus)

—
INGV (designed by Italian Team at INGV)

c, <70 MPa
v=1um/s-9m/s
d = infinite
Power 270 kW
Torque 1100 Nm
(data for 50/30 mm
~ ext/int diameter: with
. 25 mm diam., we can
go up to 100 MPa)

Di Toro et al., 2010



An environmental/vacuum chamber equipped with a mass
spectrometer has been installed in 2010. We have facilities to control
02 fugacity in the experiments.




Experiments with gouges
Sample holder to perform experiments with non cohesive rocks. We
tested it up to 32 MPa normal stress and 6.5 m/s slip rate.

FLANGIA
/ ROTANTE
L

/
7|
4-

M N
i

N

[W
AN
7 \::
\/géi\\\

l—
\
25
AR

ﬁ
NN
\é;s\

H

D—

POLVERE
CAMPIONE —1

27

See the detail in Smith et al., Geology, 20
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Gouge sample holder

Outer conf.
~ ring: Vidiam

Rough slip
surface
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Gouge sample holder




Gouge sample holder

ST e -

Photo of gouge holder in same orientation as previous diagram
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Calibration of sample holder with calcite powders
Time s389 (ms)
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Shear Stress (MPa)
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The 2008 Wenchuan earthquake (Mw 7.9)
produced two major surface ruptures
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Thickness of slip
zone: 1.5—2cm

Li et al., 2013 Tectonophysics



Thickness of slip

15—2cm

zone

Ip Zone

ipal Sl

Princ

013 Tectonophysics

0B o

47

B[ JO UOITEI0| Y |




. |
Normal 4

l 1| CETE T

5. < 60 MPa
SHIVA at INGV | Velocity up to 6.5 m/s

The .- Rotary ‘.j
. — Motion

Gouge material
(5g of <250um
Black fault gouge)




Tested up to 25 MPa normal stress and 3 m s slip velocity




High Velocity Rock Friction Experiments
(HVRFE) performed at seismic slip rates
(0.1-10 m/s) may allow the:

Determination of dynamic friction (and its
evolution) during seismic slip

Investigation of the physico-chemical
processes occurring during simulated faulting

Recognition of mineralogical and
microstructural indicators within exhumed (or
active) fault zones

ldentification of fault weakening mechanisms



Friction coefficient

Evolution of friction during “realistic”
co-seismic slip pulses
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Fault gouges are dynamically weakened at high
normal stress and co-seismic slip velocities
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High Velocity Rock Friction Experiments
(HVRFE) performed at seismic slip rates
(0.1-10 m/s) may allow the:

Determination of dynamic friction (and its
evolution) during seismic slip &~

Investigation of the physico-chemical
processes occurring during simulated faulting

Recognition of mineralogical and
microstructural indicators within exhumed (or
active) fault zones

ldentification of fault weakening mechanisms



Fault gouges deformed at co-seismic slip velocities are cut
by highly reflective slip surfaces

Reflective
slip
surface

Starting material

Gouge layer
underneath slip
10 mm surface



Fault gouges deformed at « T33C-2645 fault mirrors re cut

Micro-analytical results of Fault Mirrors

by higl  ruimer

Reflective
slip
surface

iy Mett patches of FMs was obtained from the observa-
tmoﬂS)TEM.(BJSEII and (4) AFM



Change in deformation mechanism

Thin section close to slip surface
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In-situ synchrotron XRD analysis
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Graphitization process took place during EQs!!
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High Velocity Rock Friction Experiments
(HVRFE) performed at seismic slip rates
(0.1-10 m/s) may allow the:

Determination of dynamic friction (and its
evolution) during seismic slip &~

Investigation of the physico-chemical
processes occurring during simulated faulting v

Recognition of mineralogical and
microstructural indicators within exhumed (or
active) fault zones

ldentification of fault weakening mechanisms



Are experimental products similar to natural ones?
Yes (example for carbonaceous gouge).
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The occurrences of Graphite

Graphite 2
== = mm “Possible bands of graphité™ ™ (.

Li, unpublished data



High Velocity Rock Friction Experiments
(HVRFE) performed at seismic slip rates
(0.1-10 m/s) may allow the:

Determination of dynamic friction (and its
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Graphitization process seems to lubricate the fault
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High Velocity Rock Friction Experiments
(HVRFE) performed at seismic slip rates
(0.1-10 m/s) may allow the:

Determination of dynamic friction (and its
evolution) during seismic slip &~

Investigation of the physico-chemical
processes occurring during simulated faulting v

Recognition of mineralogical and
microstructural indicators within exhumed (or
active) fault zones &

ldentification of fault weakening mechanisms
Check in the future!!



Conclusion

e Experimental results indicate that the
Longmenshan fault at this locality is extremely
weak.

e Graphitization occurred due to frictional
heating of carbonaceous materials.

 The associated product, graphite, could be
used as an indicator of transient frictional
heating during seismic slip in the upper crust.



Future works




If you can’t explain
something ,
you don’t

understand it well.
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Thank you for your listening!!



Starting Material at 12 MPa without
shearing (Optical)
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Starting Material at 12 MPa without

Gabbro

shearing (SEM-BSE)

Gabbro

Bt %

HV spot| mag O D pressure det | mode
15.00 kV| 3.0 80x [11.0 mm|1.18e-3 Pa| BSED [Z Cont




Computation of temperature evolution along
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For small changes in V, u varies of few % and

critical slip distance is few hundreds microns
V=0.4mm/s —> V=4mm/s
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These experimental results found broad

application in Earthquake mechanics (e.g.,
Dieterich-Ruina Law)

Rate- and State-Variable ‘Friction Law

Constitutive law: Sion it ||
laboratory observation
v

h T

1 , b

V ( VOH] _ ; (a-b) | - pc & '

r=|p,+aln| — |+bln c -

¥ Dc

Displacement ———p
Lo: friction for steady-state slip at velocity V)

0: state variable (Ruina, 1983)

a and b: empirical constants O—1 Ve
Dc: critical slip distance

V: frictional slip rate



HVRFE are conducted in rotary shears
£ on < 25 MPa

v=>50 um/s—-1.3 m/s
d = infinite

Low to high velocity friction == P
apparatus at NCU b | ow




Details of the vacuum environmental chamber and vacuum pump (the red box
In the right photo).

T—




Pore fluids Experiments

Fluid
pressuriizing
system

Pressure vessel
(modified from
Hirose)
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Fluid pressurizing system (drained config.)

OUTLET VALVE (water)
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Summarizing, SHIVA:

1) performed about 500 experiments.

2) can apply (> 100 MPa in samples of 25 mm in diameter; up to 70 MPa in samples
50/30 ext/int diameter).

2) imposes slip rates from 0.01 mm/s to 6.5 m/s in samples 50/30 ext/int diameter

3) imposes abrupt accelerations (under maximum load, from 0 to 6.5 m/s in 0.1 s)

4) imposes infinite displacement

5) owns different control systems the allow to run experiments with imposed velocity
functions and that allow to run experiments under shear stress control (this makes
SHIVA the only rotary shear able to do this — and better reproduces natural conditions).
6) owns a pressure vessel (already tested up to 3.0 m/s) that allows to perform
experiments up to 15 MPa fluid pressure

7) owns a specifically designed non-cohesive rock sample holder tested up to 35 MPa
and 6.5 m/s (note that the other rotary shear apparatus can work only up to 1 or 2 MPa
at most with non cohesive rocks).

8) owns a vacuum / environmental chamber equipped with mass spectrometer (already
tested) that allows to control oxygen fugacity during the experiments and to determine
the composition of gas produced by chemical reactions during frictional sliding

9) owns transducers that allow to record AEs during the experiments

10) owns high-speed camera, infra-red thermal camera and thermocouples that allow
measure the temperature evolution during the experiment.



Example: thermal decomposition in
calcite-bearing rocks

Low

Weakening: exponential decay
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Han et al., Science, 2007



Are there seismological data that might match the

experimental observations?

Breakdown works W, (energy spent at a point of a fault to
allow rupture propagation) measured in experiments are in

the range of seismological estimates.
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Extrapolation of experimental data to seismogenic
depths (6, ~100 MPa) suggests Dy, << 1 m.

20 Tonalite (Di Toro et al., 2006a)
] Cataclasite (Di Toro et al., 2006b)
Gabbro (Nielsen et al., 2008)
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