Deformation of a Ross Ice Shelf Rift measured through GPS and Seismic Observations

NASA

Mong-Han Huang University of Maryland, College Park

Slide courtesy of Kira Olsen

Slide courtesy of Kira Olsen

39

100 250

10

at all

13

ST.

AS-MARK

32

Ala S

5.57

and a second

50 km

NASA Cassini Imaging Team

Slide courtesy of Kira Olsen

What is the **interior** structure? Do fractures **span the full thickness** of the icy shell?

Slide courtesy of Kira Olsen

Slide courtesy of Kira Olsen

Seismic investigation will be the way future landed missions to icy worlds answer these questions

SA Artist's Rer

Earth's Ross Ice Shelf as an analog

Antarctic Rift Research for Ocean Worlds ARROW

- Terry Hurford (NASA Goddard)
- Nicholas Schmerr (UMD)
- Kelly Brunt (NSF/NASA Goddard/UMD)
- Alyssa Rhoden (SwRI)
- Mong-Han Huang (UMD)
- Kathrine Udell Lopez (UMD)
- Kira Olsen (NASA Goddard/UMD)
- Emily Harkleroad, Simon Eisl, and Zoe Schlossnagle (Undergrads)
- Kat Dapré (Postdoc)

The Setting

The Setting

16 seismic stations

- 16 seismic stations
- 12 GPS stations

- 16 seismic stations
- 12 GPS stations
- 5 active source lines

- 16 seismic stations
- 12 GPS stations
- 5 active source lines
- ~30-day seismic record
- ~40-day GPS record

Ice Shelves

- Formed by ice flowing from the continent onto the ocean
- Rifts form from differences in flow speed that allow for opening

- toward north

Deployment: Dec 2022 - Jan 2023

- 16 seismometers
- 12 GPS stations
- 1 active source seismic survey
- A few GPR lines

Fieldwork

Retrieving GPS & seismometer

Active source seismic experiment

Long Term Deformation

 2.6 m/day flow towards N10°E

Long Term Deformation

5 cm/day opening towards N30°E

Long Term Deformation

 Strain rate perpendicular to rift

strain within ice

Secular vs Diurnal motions across the rift

Lecuakes

- **Events identified** manually
- About 6000 events
- Also based on ML
 - EQT
- **Events associated** and located using GaMMA

ARROW Seismicity and Strain Rate

0

4 km

Asymmetric, but why?

Low contrast, high resolution imagery provides a clue

Seismic Activity

Seismic Activity

- Seismicity driven by across rift tidal strain rate
- Assuming stress and strain are in phase
- Icequakes production rate is modeled by the tidal stressing rate

Mean Tensile Strain (10⁶) Mean Number of Icequakes

Seismic Activity

- Human located events
- New events in red
- Smoothed average across rift strain rate

Icequake focal mechanism

Icequake focal mechanism

Selected focal mechanisms

Summary

- Active source experiments indicate a ~40 m thick firm layer with soft snow, followed by ~350 m thick of solid ice.
- GPS data indicates a 5 cm/day secular opening across the rift
- There is a up to 5 mm opening/closing during a tidal cycle.
- Most icequakes are located on both sides of the rift, but there are more events on the north side.
- Icequakes are modulated with tidal stressing rate (or strain rate). Icequakes appear to occur along the active rifting portion of the
- rift
- Icequake focal mechanisms indicate a common T-axis along N-S

Ongoing and future research Repeating events and their families

Ongoing and future research **Repeating events and their families**

Family 18

Number of events: 10 Longevity: 11.17 days Mean event spacing: 29.80 hours Median event spacing: 28.89 hours Mean frequency index: 0.28

First event: 2022-12-11T18:32:43.258000 Core event: 2022-12-11T23:58:06.162000 Last event: 2022-12-22T22:44:04.476000

40

Ongoing and future research Change of seismic velocity within the ice

Thank you!

