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Tectonic setting

Hsinshe
Chi-Chi earthquake 
rupture:

(Dominguez et al, 2003) !

Horizontal coseismic displacements!
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Fault-bend folding over earthquake cycles

Modified from 
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=> Coseismic uplift:      ui = S . sin θi  !

Assumptions :  Fault-parallel displacement with conservation of bed length
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Modified from 
Suppe et al (1997)

Back limb steepens 

and widens.

Misleading morphology for 
axial surface mapping

=> overestimation of S

Back limb reaches a maximum

and only widens



Fault-bend 
folding theory

depend on 
subsurface 
geometry

sensitive to 
local base 
level changes

- Recipe 1: terrace height relative to footwall:

      S = (h1+hz+hx) / sin θ1  

      S = (h2+hz+hx) / sin θ2  !

Assumption : 

Fault-parallel 
displacement 

with conservation of 
bed length
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Fault-bend 
folding theory

sensitive to 
local base 
level changes

- Recipe 2: height of fold scarp:

	
� S = Δh / (sin θ2 - sin θ1) 	
�

- Recipe 3: width of fold limb:

	
� S = WL 

- Recipe 1: terrace height relative to footwall:

      S = (h1+hz+hx) / sin θ1  

      S = (h2+hz+hx) / sin θ2  !

Assumption : 

Fault-parallel 
displacement 

with conservation of 
bed length

depend on 
subsurface 
geometry

Modified from Suppe et al (1997)



Fault-bend 
folding theory

Oblique faulting : 

Azimuth of slip 
vector

sensitive to 
local base 
level changes

- Recipe 2: height of fold scarp:

	
� S = Δh / (sin θ2.cos α2 - sin θ1.cos α1 ) 
	
�

- Recipe 3: width of fold limb:

	
� S = WL / cos α

- Recipe 1: terrace height relative to footwall:

      S = (h1+hz+hx) / sin θ1 . cos α1 

      S = (h2+hz+hx) / sin θ2 . cos α2 !

Assumption : 

Fault-parallel 
displacement 

with conservation of 
bed length

depend on 
subsurface 
geometry

Modified from Suppe et al (1997)
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Kink-band growth above 
a 2D oblique thrust 

Map	
  view
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Dip 
direction
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Terrace risers versus fold scarps
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3 main terrace levels ; many more on top the scarp

! (Tsai & Sung, 2003; Lai et al 2006) 
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3 main terrace levels ; many more on top the scarp

! (Tsai & Sung, 2003; Lai et al 2006) 

Northward migration of the riverbed

Dramatic river incision post-T4

Overview of the Hsinshe terraces
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From younger to older terraces :   

- Increase in terrace heights h
- Increase in relief across the fold scarp Δh

- Increase in the length of the fold limb WL



Deformation of the terraces

From younger to older terraces :   

- Increase in terrace heights h
- Increase in relief across the fold scarp Δh

- Increase in the width of the fold limb WL

- Decrease in the slope of the riverbed

=> Partly due to changes in sinuosity



Subsurface structure of the Chelungpu Thrust

Bedding-parallel 
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Subsurface structure of the Chelungpu Thrust

Bedding-parallel 

thrust ramp with 
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Deformation of terrace T1

- Recipe 2: height of fold scarp:

	
� S = Δh / (sin θ2.cos α2 - sin θ1.cos α1 ) 
	
�

=> 3D : determine simultaneously 

amplitude and azimuth of long-term 

slip vector	
�

Fault model  

- Recipe 3: width of fold back limb:

	
� S = WL / cos α



Measurements of scarp relief Δh 

and fold back limb width WL 

for each of the 3 fold scarps. 

Deformation of the terraces

20˚

14˚

5˚

7˚
average slope 14˚



From terrace deformation to cumulative slip: T1

Results from scarp heights:
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From terrace deformation to cumulative slip: T1

What about fold back limb width?

=> WL models largely 

overestimate ΔH solution

+ expected slope angle = 30˚

while observed slope angle = 14˚ 

How to explain this ?

S = WL / cos α



Evidence for 2 fold scarps across T2 and T3

=> Existence of a double fault bend

=> This double bend may 

also exist under T1...

Fold scarp geometry in map view



Folding above a double fault bend

Modified from 

Medwedeff & Suppe (1997)
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Folding above a double fault bend

Modified from 

Medwedeff & Suppe (1997)



From terrace deformation to cumulative slip: T1

S = 1/2 * WL / cos α



From terrace deformation to cumulative slip: T1

=> WL models are biased due to 

merged kink-bands 

 WL = 2 x S

=> Long-term slip vector based 

on scarp relief:

523 ± 81 m oriented N338˚ ± 6˚ 

S = 1/2 * WL / cos α



Long-term slip vector versus Chi-Chi coseismic displacements

Coseismic displacements from Yang et al (2000), 
Yu et al (2001), Dominguez et al (2003)

Long-term slip vector = 
523 ± 81 m oriented N338˚ ± 6˚ 

Cumulative fold scarp
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Long-term slip vector versus Chi-Chi coseismic displacements

Coseismic displacements from Yang et al (2000), 
Yu et al (2001), Dominguez et al (2003)

=> Long-term slip vector parallels !

   Chi-Chi coseismic displacements !

Long-term slip vector = 
523 ± 81 m oriented N338˚ ± 6˚ 

Cumulative fold scarp



From terrace deformation to cumulative slip: T2

Using scarp relief ΔH + azimuth N338˚±6˚

=> Slip = 432 ± 78 m  

Fold back limb eroded away:



From terrace deformation to cumulative slip: T3

Back limb slope angle << predicted slope (21˚)
=> immature fold scarp
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Cumulative slip results

- T1 : 3D-deformation ΔH:
=> Long-term slip vector 
   523 ± 81 m along N338˚ ± 6˚ 

- Using N338˚ ± 6˚ and ΔH :
=> T2: 432 ± 78 m  
=> T3: 271 ± 62 m   

Long-term slip vector: 
   - Similar to Chi-Chi
   - 45˚ away from interseismic

T1
T2

T3



Cumulative slip results

- T1 : 3D-deformation ΔH:
=> Long-term slip vector 
   523 ± 81 m along N338˚ ± 6˚ 

- Using N338˚ ± 6˚ and ΔH :
=> T2: 432 ± 78 m  
=> T3: 271 ± 62 m   

Long-term slip vector: 
   - Similar to Chi-Chi
   - 45˚ away from interseismic

We now need a fault slip rate ! 

slip rate = slip / deformation age

T1
T2

T3



Optically Stimulated Luminescence (OSL) dating: Principle



Optically Stimulated Luminescence (OSL) dating: Principle

Age = acquired luminescence (= paleodose)
rate of luminescence acquisition (= dose rate)

geochemistry

laboratory optical 
stimulation



OSL ages

Consistent ages 

on 4 consecutive terrace levels



Shortening rate (N300˚) : 

14.0 ± 2.9 mm/a

Fault slip rate on the Northern Chelungpu Thrust



Shortening rates along strike

- Significant increase from south to north 

5.6 ± 1.9 mm/a 
since 14 ka (**) 

12.1 ± 1.3 mm/a 
since 38 ka (**) 

14.0 ± 2.9 mm/a 
since 30 ka

6.0 ± 2.6 mm/a 
since 14 ka (**)** Simoes et al 

(submitted)
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Shortening rates along strike

- Significant increase from south to north 

- Faster rate in the north also 
supported by higher mean elevation 
of the hanging-wall topography

5.6 ± 1.9 mm/a 
since 14 ka (**) 

12.1 ± 1.3 mm/a 
since 38 ka (**) 

14.0 ± 2.9 mm/a 
since 30 ka

6.0 ± 2.6 mm/a 
since 14 ka (**)

220	
  m
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  m

Average	
  
eleva)on	
  
above	
  

base	
  level

** Simoes et al 
(submitted)

- Chi-Chi coseismic displacements 
increased from south to north as well...
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Chi-Chi coseismic displacements 

and long-term shortening rates 
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+

Long-term slip vector parallels 
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Chi-Chi coseismic displacements 

and long-term shortening rates 

vary in similar proportions !

+

Long-term slip vector parallels 

Chi-Chi coseismic displacements, 

at least in Hsinshe !

=> Chi-Chi could be 

a characteristic earthquake !!

Coseismic versus Long-term deformation

Slip distribution models

Modified from Schwartz and Coppersmith, 1984 



Age of fault inception

- Neiwan anticline: 
total shortening: ~540 m 
(Graveleau et al, in prep.)
=> Recently propagated fault

- Assuming shortening rate 
proportional to Chi-Chi coseismic 
displacements: 16.4 ± 5.5 mm/a

=> Fault inception 32 ± 11 ka ago

Similar to T1 (30 ± 4 ka) in Hsinshe 

12.1 ± 1.3 mm/a 
since 38 ka (**) 

14.0 ± 2.9 mm/a 
since 30 ka

6.0 ± 2.6 mm/a 
since 14 ka (**)

Total slip 540 m 

5.6 ± 1.9 mm/a 
since 14 ka (**) 
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Chi-Chi earthquakes 
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Comparison with paleo-seismology studies

Chi-Chi earthquakes recurrence interval : 

440 ± 55 years.

Paleo-earthquake record:

Chen et al [2007]

Late Pleistocene record:



Distribution of shortening in Central Western Taiwan

Yue et al [2005]

Changhua 
Thrust

Chelungpu 
Thrust

Y
Y’

Y Y’



Distribution of shortening in Central Western Taiwan
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this study, 
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Distribution of shortening in Central Western Taiwan

Simoes et al 
[2007, a & b, 2013 submitted],

 Yue et al [2011], 
this study, 

Hsu et al [2009]



Relationship with N. Changhua fault 
+ 1935 earthquake fault?



Conclusions

- Methodology: 

Extensive exploration regarding how to use geomorphic criteria from fold scarps
Although powerful, fold back limb width can be misleading. 
Importance to relate surface deformation and sub-surface structure



Conclusions

- Methodology: 

Extensive exploration regarding how to use geomorphic criteria from fold scarps
Although powerful, fold back limb width can be misleading. 
Importance to relate surface deformation and sub-surface structure

- Determination of the long-term slip vector thanks to 3D analysis of deformation 
and sub-surface structure

+ Collinearity of long-term and coseismic slip vector at our study site

- Chi-Chi could be a characteristic earthquake for the Chelungpu fault ramp, 
probably since about 32 ka. 

Recurrence interval = 440 ± 55 years 



Thanks for your attention !
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Fault slip and azimuth determination

Terrace T1 : 

Terrace T3 : 

Terrace T2 : 
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Tectonic uplift versus base level change

sensitive to 
local base level 
changes

- Recipe 1: terrace height 
relative to footwall:

 S = (h + hx) / sin θ

Cumulative slip: ! T1 : ! 523 ± 81 m

! ! T2 : ! 432 ± 78 m

! ! T3 : ! 271 ± 62 m
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Tectonic uplift versus base level change



Tectonic uplift versus base level change

Changes in river regime 
that coincide with paleo-climatic variations   

(Liew et al 2006) 



OSL dating the terraces	
�

Sampling 

in tube within 
sand lenses 

or interstitial 
sand under black 
cover

- Sampling  - - Pre-heat test -



OSL ages

De = Paleodose

Consistent ages on 4 
consecutive terrace levels


