Deciphering long-term fault slip vectors from fold scarps on alluvial terraces:

Relationships between long-term and coseismic slip on the Chelungpu fault, central western Taiwan

Maryline Le Béon,

J. Suppe, M. K. Jaiswal, Y.-G. Chen, and M. Ustaszewski

National Taiwan Jniversity

NCU seminar January 10th 2014

Tectonic setting

Chi-Chi earthquake rupture:

Horizontal coseismic displacements (Dominguez et al, 2003)

Tectonic setting

Chi-Chi earthquake rupture:

Horizontal coseismic displacements (Dominguez et al, 2003)

Coseismic fold growth during Chi-Chi earthquake

Coseismic fold growth during Chi-Chi earthquake

Assumptions : Fault-parallel displacement with conservation of bed length

=> Coseismic uplift: $u_i = S \cdot \sin \theta_i$

1. Initial stage:

Assumptions : Fault-parallel displacement with conservation of bed length

=> Coseismic uplift: $u_i = S \cdot \sin \theta_i$

2. After 1 earthquake:

Assumptions : Fault-parallel displacement with conservation of bed length

=> Coseismic uplift: $u_i = S \cdot \sin \theta_i$

3. After n earthquakes

Assumptions : Fault-parallel displacement with conservation of bed length

=> Coseismic uplift: $u_i = S \cdot sin \theta_i$

Assumptions : Fault-parallel displacement with conservation of bed length

=> Coseismic uplift: $u_i = S \cdot sin \theta_i$

Assumptions : Fault-parallel displacement with conservation of bed length

=> Coseismic uplift: $u_i = S \cdot sin \theta_i$

Fault-bend folding theory

Assumption :

Fault-parallel displacement

with conservation of bed length

sensitive to local base level changes depend on subsurface geometry

- Recipe 1: **terrace height** relative to footwall:

S =
$$(h_1 + h_z + h_x) / \sin \theta_1$$

$$S = (h_2 + h_z + h_x) / \sin \theta_2$$

 $\Delta \mathbf{h}$

Kink-band growth above Active a 2D pure thrust axial surface Cross-section G: growth axial surface zone A: active axial surface zone S

Kink-band growth above Active a 2D pure thrust axial surface Growth axial surface - kink-band Cross-section G: growth axial surface zone A: active axial surface zone S Slip vector S

Kink-band growth above Active a 2D pure thrust axial surface Growth axial surface 🔾 - kink-band Cross-section G: growth axial surface zone A: active axial surface zone S Slip vector S

Kink-band growth above a 3D oblique thrust

Kink-band growth above Active Growth a 3D oblique thrust kink-band axial surface axial surface S λ

Map view

Terrace risers versus fold scarps

3 main terrace levels ; many more on top the scarp

(Tsai & Sung, 2003; Lai et al 2006)

3 main terrace levels ; many more on top the scarp

(Tsai & Sung, 2003; Lai et al 2006)

Overview of the Hsinshe terraces

3 main terrace levels ; many more on top the scarp

(Tsai & Sung, 2003; Lai et al 2006)

Northward migration of the riverbed

Dramatic **river incision** post-T4

Deformation of the terraces

From younger to older terraces :

- Increase in **terrace heights h**
- Increase in relief across the fold scarp $\Delta \textbf{h}$
- Increase in the length of the fold limb \mathbf{W}_{L}
Deformation of the terraces

- Increase in relief across the fold scarp $\Delta \boldsymbol{h}$
- Increase in the width of the fold limb W_L
- Decrease in the slope of the riverbed
- => Partly due to changes in sinuosity

Subsurface structure of the Chelungpu Thrust

+1

Sea level

-1

-2

-3

-4 km

εl

Subsurface structure of the Chelungpu Thrust

Bedding-parallel thrust ramp with varying dip

Chi-Chi GPS slip vectors parallel to the ramp dip

Projected coseismic GPS vectors of Chi-Chi earthquake

- Recipe 2: height of fold scarp:
 - S = Δh / (sin θ_2 .cos α_2 sin θ_1 .cos α_1)
- => 3D : determine simultaneously amplitude and azimuth of long-term slip vector

- Recipe 3: width of fold back limb:

 $S = W_L / \cos \alpha$

Deformation of the terraces

Measurements of scarp relief Δh

and fold **back limb width** W_L

for each of the 3 fold scarps.

Fold scarp geometry in map view

Evidence for **2 fold scarps** across T2 and T3

=> Existence of a **double fault bend**

=> This double bend may also exist under T1...

2 fold scarps

a. Initial stage:

Modified from Medwedeff & Suppe (1997)

a. Initial stage:

b. Fault slip S < distance A1-A2:

Modified from Medwedeff & Suppe (1997)

b. Fault slip S < distance A1-A2:

Modified from Medwedeff & Suppe (1997)

b. Fault slip S < distance A1-A2:

d. Fault slip S > distance A1-A2:

Modified from Medwedeff & Suppe (1997)

- Becondary E-W hild score Hear fele (core) 10 10 10 10 10 10
 - => W_L models are biased due to merged kink-bands W_L = 2 x S
 - => Long-term slip vector based
 - on scarp relief:
 - 523 ± 81 m oriented N338° ± 6°

Long-term slip vector versus Chi-Chi coseismic displacements

Long-term slip vector =

523 ± 81 m oriented N338° ± 6°

Cumulative fold scarp

Coseismic displacements from Yang et al (2000), Yu et al (2001), Dominguez et al (2003)

Long-term slip vector versus Chi-Chi coseismic displacements

Long-term slip vector = 523 ± 81 m oriented N338° ± 6°

=> Long-term slip vector parallels Chi-Chi coseismic displacements !

Cumulative fold scarp

Coseismic displacements from Yang et al (2000), Yu et al (2001), Dominguez et al (2003)

Long-term slip vector versus Chi-Chi coseismic displacements

Long-term slip vector = 523 ± 81 m oriented N338° ± 6°

=> Long-term slip vector parallels Chi-Chi coseismic displacements !

Coseismic displacements from Yang et al (2000), Yu et al (2001), Dominguez et al (2003)

Fold back limb eroded away:

Using scarp relief ΔH + azimuth N338°±6°

=> Slip = 432 ± 78 m

Back limb slope angle << predicted slope (21°)

Back limb slope angle << predicted slope (21°)

Cumulative slip results

T1 : 3D-deformation △H:
=> Long-term slip vector
523 ± 81 m along N338° ± 6°

Using N338° ± 6° and △H :
=> T2: 432 ± 78 m
=> T3: 271 ± 62 m

Long-term slip vector:

- Similar to Chi–Chi
- 45° away from interseismic

Cumulative slip results

T1 : 3D-deformation △H:
=> Long-term slip vector
523 ± 81 m along N338° ± 6°

Using N338° ± 6° and △H :
=> T2: 432 ± 78 m
=> T3: 271 ± 62 m

Long-term slip vector:

- Similar to Chi-Chi
- 45° away from interseismic

We now need a fault slip rate !

slip rate = slip / deformation age

Optically Stimulated Luminescence (OSL) dating: Principle

Optically Stimulated Luminescence (OSL) dating: Principle

OSL ages

Consistent ages

on 4 consecutive terrace levels

Fault slip rate on the Northern Chelungpu Thrust

Shortening rates along strike

- Significant increase from south to north

** Simoes et al (submitted)

Shortening rates along strike

- Significant increase from south to north

- Faster rate in the north also supported by higher mean elevation of the hanging-wall topography

220 m Vorthern 14.0 ± 2.9 mm/a Average since 30 ka elevation above base level 12.1 ± 1.3 mm/a since 38 ka (**) 150 m 5.6 ± 1.9 mm/a elung since 14 ka (**) 6.0 ± 2.6 mm/a since 14 ka (**) ** Simoes et al (submitted)

Shortening rates along strike

- Significant increase from south to north

- Faster rate in the north also supported by higher mean elevation of the hanging-wall topography

- Chi-Chi coseismic displacements increased from south to north as well...

Coseismic versus Long-term shortening along strike

Coseismic versus Long-term shortening along strike

Coseismic versus Long-term shortening along strike

Chi-Chi coseismic displacements and long-term shortening rates vary in similar proportions !

Coseismic versus Long-term deformation

Chi-Chi coseismic displacements and long-term shortening rates vary in similar proportions !

+

Long-term slip vector parallels Chi-Chi coseismic displacements, at least in Hsinshe !

Coseismic versus Long-term deformation

Chi-Chi coseismic displacements and long-term shortening rates vary in similar proportions !

+

Long-term slip vector parallels Chi-Chi coseismic displacements, at least in Hsinshe !

=> Chi-Chi could be

a characteristic earthquake !!

Coseismic versus Long-term deformation

Chi-Chi coseismic displacements and long-term shortening rates vary in similar proportions !

+

Long-term slip vector parallels Chi-Chi coseismic displacements, at least in Hsinshe !

=> Chi-Chi could be

a characteristic earthquake !!

Age of fault inception

- Neiwan anticline:

total shortening: ~540 m (Graveleau et al, in prep.) => Recently propagated fault

Assuming shortening rate
proportional to Chi-Chi coseismic
displacements: 16.4 ± 5.5 mm/a

=> Fault inception 32 \pm 11 ka ago Similar to T1 (30 \pm 4 ka) in Hsinshe

Chi-Chi as a characteristic earthquake

How many Chi-Chi earthquakes are responsible

for the cumulative slip determined at each site ?

Chi-Chi as a characteristic earthquake

How many Chi-Chi earthquakes are responsible

for the cumulative slip determined at each site ?

Chi-Chi as a characteristic earthquake

How many Chi-Chi earthquakes are responsible

for the cumulative slip determined at each site ?

Comparison with paleo-seismology studies

Late Pleistocene record:

Paleo-earthquake record:

Comparison with paleo-seismology studies

Late Pleistocene record:

Chi-Chi earthquakes recurrence interval :

440 ± 55 years.

Paleo-earthquake record:

Comparison with paleo-seismology studies

Late Pleistocene record:

Chi-Chi earthquakes recurrence interval :

440 ± 55 years.

Paleo-earthquake record:

Simoes et al [2007, a & b, 2013 submitted], Yue et al [2011], this study, Hsu et al [2009]

Simoes et al [2007, a & b, 2013 submitted], Yue et al [2011], this study, Hsu et al [2009]

Relationship with N. Changhua fault + 1935 earthquake fault?

Conclusions

- Methodology:

Extensive exploration regarding how to use geomorphic criteria from **fold scarps** Although powerful, fold back limb width can be misleading. Importance to relate surface deformation and sub-surface structure

Conclusions

- Methodology:

Extensive exploration regarding how to use geomorphic criteria from **fold scarps** Although powerful, fold back limb width can be misleading. Importance to relate surface deformation and sub-surface structure

- Determination of the **long-term slip vector** thanks to 3D analysis of deformation and sub-surface structure

+ Collinearity of long-term and coseismic slip vector at our study site

- Chi-Chi could be a characteristic earthquake for the Chelungpu fault ramp, probably since about 32 ka.

Recurrence interval = 440 ± 55 years

Fault-bend folding over earthquake cycles

Coseismic uplift: $u_i = S \cdot sin \theta_i$

3. After N earthquakes:

Modified from Suppe et al (1997)

Fault-bend folding over earthquake cycles

Coseismic uplift: $u_i = S \cdot sin \theta_i$

3. After N earthquakes:

Modified from Suppe et al (1997)

Fault slip and azimuth determination

Terrace T2 :

Fold scarp geometry in map view

Fold scarp geometry in map view

2 fold scarps in the North => 2 fault bends

that likely merge into a single bend to the South

Fold scarp geometry in map view

Cumulative slip: T1 : 523 ± 81 m

- T2: 432 ± 78 m
- T3 : 271 ± 62 m

sensitive to	
local base level	1
changes	

Recipe 1: terrace height relative to footwall:
S = (h + h_x) / sin θ

OSL dating the terraces

- Sampling

Sampling

in tube within sand lenses

or interstitial sand under black cover - Pre-heat test -

OSL ages

Consistent ages on 4 consecutive terrace levels

5 km

T1 T2

17.4 ± 1.6 ka

9.6±0.5 ka

