Probabilistic analysis and seismic hazard assessment with Excel applications

> J.P. Wang Dept. Civil & Environmental HKUST

Deterministic analysis

=> Given the same sample's mean, the two slopes are associated with the same factor of safety

Probabilistic analysis

• Probabilistic analysis accounts for the sample's variability as well, estimating the FOS's distribution

Methods for probabilistic analyses

- Monte Carlo Simulation
- First-order-second-moment
- Point-estimate method or Rosenblueth's method
- Etc...
- => One thing in common is the tedious computation involved during analysis

Monte Carlo Simulation (MCS)

- What is the probability getting "1" when tossing a dice?
- Below is the result of tossing the dice 100 times:

• MCS solution = 17 / 100 = 0.17

Monte Carlo Simulation (MCS)

- The larger the sample size, the more reliable the result
- Although there is some suggestion about MCS's sample size from theoretical points of view, sizes such as 50,000 are good enough
- As a result, it is lots of calculation
- To improve the computational efficiency in MCS:
 1) more powerful hardware
 2) better software (algorithms)

An efficient algorithm in searching for the "pole" in circular slope stability

Trial and Error:

New algorithm

J.P. Wang et al., Computers & Geosciences (2013a)

An efficient algorithm in searching for the "pole" in circular slope stability

Trial and Error:

J.P. Wang et al., Computers & Geosciences (2013a)

An efficient algorithm in searching for the "pole" in circular slope stability

Trial and Error:

New algorithm

J.P. Wang et al., Computers & Geosciences (2013)

Testing example:

J.P. Wang et al., Computers & Geosciences (2013a)

Testing example

J.P. Wang et al., Computers & Geosciences (2013a)

Rosenblueth method

- When the number of random variables in a problem is not too large (say less than 10), Rosenblueth method is less computational expensive compared to MCS
- Given the number of random variables = 10, this method still requires 2¹⁰ iterations (deterministic analysis = 1, MCS = 50,000)
- Considering cohesion and friction angle as random variables, there are four combinations in point estimates

Inj	out	Output			
c+	Φ+	FOS1			
c+	Φ-	FOS2			
c-	Φ+	FOS3			
c-	φ-	FOS4			

"+" => mean + SD "-" => mean - SD

	$k_{h}(-)$	$c (kN/m^2)$	φ (°)	<i>h</i> (m)	$\gamma_{sat} \ (kN/m^3)$	β (°)	$h_{w}(\mathbf{m})$	$\gamma ~(kN/m^3)$
Mean	0.25	20	35	10	26	10	8	20
S.D.	0.1 (0.2)	2 (4)	3.5 (7)	0.5	2.6	0.01	0.8	2
Correlation	$h - h_w$	$\gamma_{sat} - \gamma$	$c-\phi$	other 25 c	orrelations			
	0.8	0.9	0(-0.7)	0				

Statistics of the eight parameters of an infinite slope; the values in the parenthesis were used in sensitivity analysis.

• Automatically generate the following matrix:

	X1	X2	X3	X4	X5	X6	X7	X8	Τ
Trial 1	+	+	+	+	+	+	+	+	
Trial 2	+					+	+	-	Ι
Trial 3	+				1	+	-	+	Τ
Trial 4	+	1	n =	= 1 -	- I	+	-	-	Τ
Trial 5	+		n -	$-\iota$	T	-	+	+	Τ
Trial 6	+					-	+	-	
Trial 7	+					-	-	+	
Trial 8	+					-	-		
			1	~ 4	_i				
			z =	- 27	ı				
Trial 256	-	1	$\iota -$			-	-	-	

• Automatically generate the following matrix:

	E	F	G	Н	1	J	K	L	M	N	0	р	Q	R	
1															
2		RosenPoint: Print Title		RosenPoint: Matrix Generation				RosenPoint: FOS and Pf Computation							
3							FOS								
4			а	b	с	d									
5		MEAN	0.25	20	35	20									
6		S.D.	0.2	5	15	2									
7			a-b	a-c	a-d	b-c	b-d	c-d							
8		Correlation	0	0	1	1	0	0.5							
10			а	b	с	d	Weight	FOS		Mean_F	SD_F	Cri_F	PF~N	PF~LogN	
11			0.45	25	50	22	0.21875								
12			0.45	25	50	18	0.03125								
13			0.45	25	20	22	0.03125								
14			0.45	25	20	18	-0.03125								
15			0.45	15	50	22	0.09375								
16			0.45	15	50	18	-0.09375								
17			0.45	15	20	22	0.15625								
18			0.45	15	20	18	0.09375								
19			0.05	25	50	22	0.09375								
20			0.05	25	50	18	0.15625								
21			0.05	25	20	22	-0.09375								
22			0.05	25	20	18	0.09375								
23			0.05	15	50	22	-0.03125								
24			0.05	15	50	18	0.03125								
25			0.05	15	20	22	0.03125								
26			0.05	15	20	18	0.21875								
27															

J.P. Wang et al., Computers & Geosciences (2012a)

J.P. Wang et al., Computers & Geosciences (2012a)

Seismic hazard analysis

- To best estimate a design ground motion (e.g., PGA = 0.3 g), or the rate of motion of exceedance (e.g., PGA > 0.3 g = 0.01 per year)
- Two representative methods:
 1) Deterministic Seismic Hazard Analysis (DSHA)
 => worse-case earthquake size and location, mean value from ground motion models

2) Probabilistic Seismic Hazard Analysis (PSHA)
 => accounting for the uncertainties of size, location, ground motion models

Overview of DSHA

DSHA = MAX { H_A , H_B , H_C } $H_A = f(m_A, d_A)$ $H_B = f(m_B, d_B)$ $H_C = f(m_C, d_C)$

 $m_{\rm A},\,m_{\rm B}$ and $m_{\rm C}$ are the best estimate of maximum earthquakes induced by the fault

DSHA map for Taiwan

DSHA map for Tehran

J.P. Wang and H. Taheri, Natural Hazards Review ASCE (in press)

Overview of PSHA

PSHA study for Taipei

J.P. Wang et al., Computers & Geosciences (2013b)

Notes on DSHA and PSHA tools

- The algorithms seem not that challenging
- One interesting and challenging algorithm, needed but not reflected on the governing equations, is to determine a point inside a given polygon or not

A modified DSHA

• Extreme probability theory: the distribution of extreme values: i.e., maximum and minimum

 $\widetilde{Y} = \max\{Y_1, \cdots, Y_n\}$

to compute $Pr(\tilde{Y} \le y_{50}) = 0.5$

• For comparing it to DSHA, we calculate the estimate at the same percentile

J.P. Wang and D. Huang, Bulletin of Engineering Geology and the Environment (in press)

Regression analysis and Excel

 Regression analysis is widely used for finding some empirical relationships

J.P. Wang et al. (2012c) Soil Dynamics and Earthquake Engineering

Matrix calculations and Excel

- Matrix-based analysis such as multiple regression analysis is adopted for geosciences problems
- However, using those Excel functions on spreadsheets is not very convenient
- SHIFT + CONTROL + ENTER

Matrix calculations and Excel

- Using those functions in macros can save some hassle
- Ex: matrix multiplication
 c = MMULT(a, b)
- A multiple-regression toolkit was developed with such a simple alternative, which was then applied to earthquake early warning studies

Eigan values and Eigan factors

- Calculating eigan values of a matrix is the key to some statistical analyses, such as the principalcomponent analysis
- But I so far have no better solutions to calculate such a problem in Excel

Conclusions and Discussions

- Probabilistic analysis is a calculation that considers the variance of inputs, while deterministic analysis only considers mean values
- Excel should be a good option to probabilistic analysis