Earthquake forecasting and probabilistic seismic hazard assessment: applications to Taiwan

- Development of seismicity rate evolution model
- Development of probabilistic seismic hazard assessment
- Applications to Hualien and both Meishan & Jiashian cases

Chung-Han Chan 詹忠翰

Department of Geosciences, National Taiwan University

Rate of 1st prize: **1/22,085,448** Expected value: **ca. 44 NTD**

Rate of 1st prize: **1/13,983,816** Expected value: **ca. 27.5 NTD**

Daily fatality rate due to car accident in Taiwan: **ca. 1/4,000,000**

Use *weather forecast* to decide if an umbrella is necessary

Risk of precipitation is shown in *probability*

Probabilistic Seismic Hazard Assessment (PSHA) is....

Reference for seismic hazard mitigation policies

- Building codes
- Site selection of structures

nuclear power plant.....

Is 4th Nuclear Power Plant safe from seismic hazard?

確保核安 斷層呢 核四豈真安全

【記者郭玉屏台北報導】政府到底要怎 麼確保核安?立委林佳龍昨(13)天與海 洋大學名譽教授李昭興召開記者會,林

台電重申核四廠附近區域並無任何活動斷層

(中央社訊息服務20130313 16:50:24)針對外界關心「核四廠附近是否有活動斷層」, 合電重申表示,龍門(核四)電廠地基開挖深達26公尺,廠房座落在堅實岩盤上,其下 方並未發現斷層;民國99年中央地質調查所頒行之台灣活動斷層分佈圖,亦顯示核四 廠半徑40公里附近區域並無任何活動斷層。

即時新聞》雪山斷層影響核四?將勘查地質狀況

【台灣醒報/記者郭琇真/台北報導】

2013.03.13 05:20 pm

距核四廠16公里的雪山隧道,其下方斷層近年來不斷活動且有向核四廠延伸的跡象,海洋大學地質學者李昭興13日強調,核四廠下方除了有破碎帶的安全疑慮外,從 雪隧延伸出來的斷層也應該重啟地質勘查。對此,地調所回應說,目前立院以附帶 決議要求地調所勘查,地調所將盡量於年底公投前完成。

核四座落斷層破碎帶 台電挨轟說謊 2013年03月13日12:38 **፪**續 {144 **♀**+1 {4

立委林佳龍與海洋大學名譽教授李昭興今召開記者 會,指出核四附近澳底斷層、貢寮斷層、枋寮斷層等 經過,而台電1994年委託中國地質學會所作「透地雷 達施測」更顯示,核四廠第1、2反應爐中間的地層下 方有破碎帶經過,台電還敢說廠房坐落在堅實岩盤 上,公然說謊,呼籲台電立即重啟調查,他也說,證 據已顯示核四不安全,足以停建核四與停公投。林 說,將把相關資料送監察院、地檢署舉發。

Tohoku case.....

What can we know priori to the 2011 Tohoku earthquake?

Loss: US \$235 billion*

Explosion of the nuclear power plant

*The most expensive natural disaster in world history.

The 2011 M9.0 Tohoku-Oki earthquake follows a *foreshock* sequence

It might be forecasted if *foreshock-mainshock* behaviors are wellunderstood.

All the three events in the Meishan sequence caused casualties in the Chiayi region

Jiashian case...

Higher seismicity rate after Jiashian

Before Jiashian: M≥5.5 events: 3 (0.03 event/year) M≥5.0 events: 12 (0.11 event/year)

After Jiashian: $M \ge 5.5$ events: 3(1.00 event/year) $M \ge 5.0$ events: 3(1.00 event/year)

Chan & Wu, 2012

traditional PSHA.....

Traditional PSHA is difficult for implementation in a *real-time*

- Time consuming
- declustered catalog

Outlines.....

Cheng et al. (submitted)

Outlines

- Earthquake forecasting models
 - Long-term rate by a smoothing Kernel
 - Rate evolution by ΔCFS & rate/state model
- Probabilistic seismic hazard assessments
- Applications
 - Hualien City during 2006-2010
 - The Meishan sequence during 1904-1906
 - The Jiashian sequence during 2010-2012

Distribution of seismicity density in the surrounding area

Traditional zoneless approach (*Wu*, *BSSA*, 1996)

Apply to Taiwan...

Distribution of seismicity for *reference & forecast periods*

1973-1993 M≥4.0 TTSN catalog; 1994-2009 M≥3.0 CWBSN catalog.

forecast result...

Higher rate for *smaller magnitudes* - Follow G-R Law

Higher rate at the *eastern offshore* - The plate boundary

Reference period: 1973-2007

Higher rate for *smaller magnitudes* - Follow G-R Law

Higher rate at the *eastern offshore* - The plate boundary

Good correlation with the forecasting event distribution

Reference period: 1973-2007 Forecast period: 2008-2009

Molchan diagram...

Molchan diagram represents....

diagonal if no correlation

Molchan diagram represents....

convex arc if negative correlation

Molchan diagram represents....

concave arc if positive correlation

Only 18% events occurred in the *half* lowest density region

Reference period: 1973-2007 Forecast period: 2008-2009

Short-term seismicity rate evolution

- The Coulomb stress change
- The rate-and-state friction model

Depth dependency & *mechanism heterogeneity* should be considered for the near-real-time Δ CFS calculation

Chan & Stein, 2009

Nantou case...

Seismicity activity cannot simply be explained by *the Omori decay*

The seismicity rate in Nantou *keeps high* after Chi-Chi

The stress beneath the décollement is *enhanced*

The seismic pattern can be associated with ΔCFS

Chan & Wu, submitted

spatial variable receiver....

Assumed the same focal mechanisms as nearest references for Δ CFS calculations

Reference focal mechanisms

Assumed receiver faults for ΔCFS calculation

Catalli & Chan, 2012

Good forecasting ability by *spatial variable receiver faults* & *Max.* ΔCFS among entire seismogenic zone

 ΔCFS compares with aftershocks

Assumed receiver faults for ΔCFS calculation

Catalli & Chan, 2012

The rate-and-state friction model (Dieterich, 1994)

Illustrated by Toda & Stein, 2003

Most events occurred in the rate *enhanced* region

Molchan diagram...

Only 28% events occurred in the *half* lowest density region

Reference period: 1973-2007 Forecast period: 2008-2009

Chan et al., 2012

Only 28% events occurred in the *half* lowest density region

Not as good as forecast model by the Kernel function

> Reference period: 1973-2007 Forecast period: 2008-2009

> > *Chan et al.*, 2012

Combination....

Combine the two models for another forecasting model

The Kernel function

The rate/state friction model

Only 28% events occurred in the *half* lowest density region

Reference period: 1973-2007 Forecast period: 2008-2009

Chan et al., 2012

Compare with other results....

Only 28% events occurred in the *half* lowest density region

Combination of the two models has *the best forecasting ability*

Reference period: 1973-2007 Forecast period: 2008-2009

Chan et al., 2012

Application of the Probabilistic Seismic Hazard Assessment (PSHA)

- Long-term & short-term seismicity density rate
- Considering ground motion prediction equations

why Hualien....

• Application to Hualien City

Most of the *large earthquakes* take place along the east coast

Hualien is one of the most *populated* cities along the east coast

Rate evolution.....

Evolution of seismic rate during 2006-2010

according to the rate/state friction model

Evolution of seismic rate during 2006-2010

Significant rate increase near Hualien after **eq.6 (M5.1)**

GMPEs.....

Considering *ground motion prediction equations* for probabilistic seismic hazard assessment

Ground motion prediction equations used in this study:

Crustal events $\ln y = -2.5 + 1.205M_w - 1.905\ln(R + 0.51552\exp(0.63255M_w)) + 0.0075H$ Lin & Lee,
2008Interface events $\ln y = -0.9 + 1.0M_w - 1.9\ln(R + 0.99178\exp(0.52632M_w)) + 0.004H$ Lin et al.,
2011Intraslab events $\ln y = -0.9 + 1.0M_w - 1.9\ln(R + 0.99178\exp(0.52632M_w)) + 0.004H + 0.31$ Lin et al.,
2011

R: distance to the site; H: hypocentral depth *GMPEs for the footwall and soil sites

seismic hazard evolution.....

Significant rise of seismic hazard after eq.6

Seismic hazard for the 475-year return period (PGA in g)

Twice of seismic hazard is evaluated after eq. 6 *Larger* differences for the *shorter* response periods

The time-dependent PSHA can be applied to the Meishan sequence

hazard evolution.....

Higher hazard after each earthquake *Higher* hazard in the neighboring city

Annual exeedance probability for PGA=0.6 g

Importance of seismic hazard preparation near the Meishan fault Our results provided information on the seismogenic fault system

Ta-mao: Lu-chu-pon (蘆竹畔莊)

the floor subside more than a foot, the ground outside the north wall uplifted more than a foot. rice field subside

Ta-mao: Mei-tze-keng(梅仔坑)

The ground opened suddenly, one firewood collector dropped into the fissure. Then the ground closed.

1792 | - **114 yr.** 1906 | - **108 yr.** 2014 **??**

The Meishan Fault (1906 Meishan Earthqauke)

By Prof. S.N. Cheng

Jiashian case....

Higher seismicity rate after Jiashian

Before Jiashian: M≥5.5 events: 3 (0.03 event/year) M≥5.0 events: 12 (0.11 event/year)

After Jiashian: M≥5.5 events: 3 (1.00 event/year) M≥5.0 events: 3 (1.00 event/year)

Chan & Wu, 2012

rate evolution.....

Higher rate is expected near epicenters Consequent events can be *forecasted*

hazard evolution.....

Higher seismic hazard is evaluated after occurrence of each large earthquake

Seismic hazard for the 2.1‰ annual exeedance probability (PGA in g)

Application: Warnings for precise industries

Application: To determine *Business Continuity Planning*

Application: To determine *insurance rate categories*

Based on *hazard maps* and *Vulnerability models*

Is 4th Nuclear Power Plant safe from seismic hazard?

Our result:

0.23~g with 10% in 50 yr

Seismic design: $0.40 \ g$

What we have obtained:

- Low hazard in the site
- Might safe from seismic hazard

Crucial future works:

- Consider active faults for PSHA
- Investigate site condition
- Implement waveform simulations
- Investigate historical earthquakes
- Assess seismic risk

Thanks!

<u>References</u>:

Catalli & Chan, GJI, 2012 Chan & Stein, GJI, 2009 Chan & Wu, JAES, 2012 Chan et al., NHESS, 2012 Chan et al., Tectonophy., 2012 Chan et al., NHESS, 2013 Chan et al., TAO, 2013 Rapid \triangle CFS calculation Chi-Chi \triangle CFS Jiashian sequence Forecasting models Stress state in Taiwan PSHA in Taiwan Meishan sequence

Source slip model for each earthquake by the scaling law

After Yen & Ma, 2011

Form the BATS catalog

rate/state....

Assumed the same focal mechanisms as nearest references for ΔCFS calculations

Source eqs....

Insignificant different when variations of $A\sigma$ are assumed

Fraction of failure to predict

Combination model....

Insignificant different when *bandwidth function* are in the confidence interval

Fraction of space occupied by alarm

Rate change....

-10.0 -5.0 -1.0 -0.5 -0.1 0.0 +0.1 +0.5 +1.0 +5.0 +10.0

Forecasting results...

Why *time-dependency* should be implemented for risk assessment?

- *Consequent events* may result in larger damage
- For *short-term* needs: *relief* & *shelter*
- For *mid-term* needs: *recovery* & *reconstruction*

Earthquake	Distance to Christchurch	PGA in Christchurch
2010 Darfield	40 km	0.30 g
2011 Christchurch	5 km	1.88 g

The proposed flow chart for PSRA

Concerns of this model:

No data for PGA > 1.3 g; Distribution (log-log) is *different* from building vulnerability model

Vulnerability models for different building types types for varies building codes

Alternative procedures for mortality estimation

Alternative procedures for mortality estimation

Analysis the relations between each other

Further application: seismic risk assessment

.... Meishan eq

1906 Meishan Earthquake Scenario

Prof. Lee 1906 Meishan eartqhuake -Meishan fault

-Compilation of the subsurface structure, seismic-reflection, logging, micro-temors -Simulation (Dr. Lee, and Dr. Yen)

-Literature data (Prof. Cheng)

=>Validation the TEM Exercise HAZARD, RISK, SOCIAL IMPACT

Ground shaking of the Meishan Scenario

Can be regarded as an input for *risk* assessment

Ground shaking from *other approaches* can also be inputs of OQ

Considering *Fatality rates* as a function of ground shaking from the 1999 Chi-Chi case

Fatality ratio (FR)

Distribution of population

Scenario case in respect of fatality

Case II may attributes more fatality in a wider range than Case I

Rupture alignment in 1906

Rupture alignment in 1906, blind fault, and liquefaction region