THE Attenuation Characteristic In Arc-continent Collision Zone Of Taiwan From Shallow To Deep

> 王郁如 Yu-Ju Wang

國立中央大學 地球科學系 中央研究院 地球科學研究所

outlines

- * Introduction : Attenuation (Q⁻¹)
- * The attenuation properties of the Taiwan orogenic structure
- * The attenuation features within the Chelungpu fault zone
- * The subsurface attenuation model of Taiwan (depth ~300 m)
- * New Attenuation Relationship for normal faulting earthquakes in the northeast offshore Taiwan

seismic attenuation (Q⁻¹)

- Time domain: amplitude decay, longer duration
- Frequency domain: amplitude decay at high frequency
- Factors: temperature, fluid, cracks, permeability

Bennington et al. (2008)

The attenuation properties of the Taiwan orogenic structure

Q tomography

• Observed velocity Spectrum:

10

10

Frequency (Hz)

• ω^2 -source model assumption:

• *Q* tomography:

fc : corner frequency Ω_0 :spectrum plateau value t* : whole-path attenuation operator

two-steps of non-linear least-squares spectrum fitting

frequency (Hz)

time (sec)

Model grid Initial Qp, Qs model

Spread function

$$S_{j} = \log \left[\left| s_{j} \right|^{-1} \sum_{k=1}^{N} \left(\frac{s_{kj}}{\left| s_{j} \right|} \right)^{2} \right] D_{jk}$$

Michelinin and McEvilly (1991)
$$\underbrace{k}_{k}$$

• larger S_i, more smearing

Qp, **Qs** Tomography images

Wang et al. (2010)

Chelungpu Fault

Peikang High \ Central Range Peikang High ✓ High Qp, Qs

Central Range

- ✓Aseismic Zone
- ✓ High Temperature
 - (Ma et al. 1996; Lin 2000;
- Simoes et al. 2007; Yamato et al. 2008)

Pingtung Plain

and estuarine sediments within fully fluid-saturated property of Pingtung Plain.

The attenuation features within the Chelungpu fault zone

Mw 0.28-1.5

Wang et al. (2012)

The estimation of t*

Location	Depth Range (m)	Q _P	Qs	Rock Type	Authors
Oroville	0-475		9	ophiolite	Malin et al. (1988)
Oroville	375-475		11	ophiolite	Malin et al. (1988)
Anza	0-150	6.5	9	granite	Aster and Shearer (1991)
Anza	150-300	27	26	granite	Aster and Shearer (1991)
Garner Valley	0-220		12	soil, weathered granite, and granite	Archuleta et al. (1992)
Santa Clara Valley	10-35		10	Quaternary alluvium	Gibbs et al. (1994)
Santa Clara Valley	40-115		15	Quaternary alluvium	Gibbs et al. (1994)
Parkfield	0-200	6~11	8~19	Tertiary sediments	Blakeslee and Malin (1991)
Parkfield	0300		10	Tertiary sediments	Jongmans and Malin (1995)
Parkfield	0-1000	-	37	Tertiary sediments	Jongmans and Malin (1995)
Los Angeles basin	0-420	45		Pleistocene and Pliocene sediments	Hauksson et al. (1987)
Los Angeles basin	420-1500	43	25	Pleistocene and Pliocene sediments	Hauksson et al. (1987)
Cajon Pass	700-1500	36 ±11	24 ±6	Mesozoic crystalline basement	Abercrombie (1997)

A selection of near-surface attenuation results in borehole (≥ 100 m) studies in California.

Table 2. Q as a Function of Depth Within the Varian Well:From This Study and Jongmans and Malin [1995]

Depth Interval, m	Q _P	Qs	Error	Q _s From J&M
0-298	~20	~10	-	8 (7-9)
298-972	30	31	25	8 (7.7-9) -
572–938 (0 & 23.5) – 938	55 33	18	30 30	65 (53-94) 37 (33-45)
·		(Abercrombie, 2000)		

Chelungpu fault:

Qs₁ (945-1110 m): 21-22 Qp₁: 27-35

Qs₄ (1110-2000 m): 45 Qp₄ : 85 Wang et al. (2012)

 \rightarrow The consistency implies that the existence of fluid, fracture and crack may dominate the attenuation feature of the near surface materials around the fault zone rather than the rock type.

The subsurface attenuation model of Taiwan (depth ~300 m depth)

CWB borehole network

CWB borehole data

- Data period: 2011/10-2013/05
- high SN ratio and low incidence angle (< 35 deg.)
- **67 events** (ML < 4.5)
- 8 events (4.0 < ML < 6.0 ; 18 km < Depth < 77 km)

• CR Qp: 5~15 (NDT 24), lower than WF

Low Qp in CR ~ area of high thermal heat flow

Attenuation applied in seismic engineering

Strong ground motion prediction ① Ground motion simulation

② Ground Motion Prediction Equation (GMPE)

PGA & PGV compared with GMPEs of NGA2008

Figure 5. PGV compared with four different GMPEs. Curves assume $V_{S30} = 400$ m/s, as explained in the text.

Figure 4. PGA, compared with four different GMPEs. Curves assume $V_{S30} = 400$ m/s, as explained in the text.

• A different choice of Vs30 can not help significantly to reduce the discrepancy.

Anderson et al. (2013)

Normal faulting events:

BATS (1995-2013) Mw>4.0 Rake:-60~-90 recorded by at least 20 station Total events:13 Total records:1067

123°

	baseline correction	Pseudo-absolute acceleration	
I Sivil P Data	filter	response spectrum	

Attenuation model I (Case1):

$$= \ln(PGA \text{ or } Sa) = C_1 + C_2 Mw + C_3 \ln(R_{hypo} + C_4 e^{C_5 Mw}) + C_6 H_i + C_7 * \ln(Vs_{30}/1130)$$
(Lin 2011, INER report)

Attenuation model II (Case 3):

$$\Rightarrow \ln(PGA \text{ or } Sa) = C_1 + C_2(\frac{Mw - 6.3}{4}) + C_3(8.5 - Mw)^2 + (C_4 + C_5(Mw - 6.3)) \ln\left(\sqrt{R_{hypo}^2 + (e^H)^2}\right) + C_6 \ln(Vs_{30}/1130)$$
(Lin, 2009)

2011.02.01 Discrepancy between Case1 & Case3 : hypocentral distance < 20 km -> simulation

2010.08.30 08:45 Mw 4.6 Dep. 11km

Normal faulting earthquake generates stronger Sa.

No difference between equations with and without considering fault mechanism.

The new GMPE for PGA do not reveal higher values for normal faulting earthquakes with Mw 4~6.

summaries

- * The *spatial variation in Qp-, and Qs-* tomography reflect several prominent tectonic structural features and the structure heterogeneity bounded by the *fault systems*, ex. *Chelungpu Fault, Pingtung Plain*.
- * The *low Qp and Qs* beneath the *Central Range* coincides well with the observed *aseismic zone*, and imaged *high temperature*. The low Q feature might be related to the high thermal extension resulted from *lower crust exhumation* during collision process.
- * The significantly *low Qp and low Qs* within the Chelungpu fault zone was attributed to the *existence of fluid*, *fracture and crack*.
- * The *high heat flow* area in the Central Range exhibits *low Qp* values of the subsurface Qp model.
- * The resultant attenuation relationship shows that the normal faulting earthquake generates *stronger Sa* which is not adopted for attenuation equation that usually used in Taiwan. The new GMPE for *PGA do not reveal higher values* for normal faulting earthquakes with Mw 4~6.

FIN

Thank you for your attention~