The Application of the Statistical Mechanical Model of Earthquake

Ya-ting Lee

Institute of Geophysics, National Central University

Outline

- Introduction
- Long-Range Connective Sandpile Model
 - -Intermittent Criticality
 - -B-Value decay
 - -B-Value and Hurst Exponent
 - -Quasi-Periodicity
- Conclusion

Statistical Numerical Models

Slider-Blocks Model

Sandpile Model

[Burridge and Knopoff, 1967] [Bak, Tang, and Wiesenfeld, 1987; 1989]

Statistical Numerical Models Fiber-Bundle Model Forest-Fire Model 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 (Damage mechanical model) 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 ۲ 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 (a) (b) (c) (d) Beginning 10 x 10 grid step 1 Configuration (tree on cell 54) F. F_o F₀ F₀ step 2 step 3 step 4 (tree on cell 71) (tree on cell 85) (tree on cell 19) step 5 step 6 step 7 (match on cell 99, A_F = 0) (tree on cell 17) (tree on cell 81) [Turcotte,GJI, Rep. Prog. Phys., 2003] step 9 step 10 step 8 (tree on cell 68) (match on cell 54, $A_F = 3$) (tree on cell 43)

Self-Organized Criticality (SOC)

Power law

Gutenberg-Richter law

Figure 2. Noncumulative frequency–area distribution for a sandpile model on a 50 × 50 grid. The number of model events, N_L , in which a specified number of boxes, A_L , become unstable, is given as a function of A_L .

[Turcotte,GJI, Rep. Prog. Phys., 2003]

What is SOC?

- The systems organize themselves at the critical point without any significant "tuning" of the system from outside
- The "System" evolves in time under the two influence of:
- 1. External driving force or forces;
- 2. Forces of internal interactions.

- Power law behavior between event size and which frequency.
- The Idea: we can specify a simplified mechanism that produces a typical behavior of many complex systems.

Outline

- Introduction
- Long-Range Connective Sandpile Model
 - -Intermittent Criticality
 - -b-Value decay
 - -b-Value and Hurst Exponent
 - -Quasi-Periodicity
- Conclusion

Small-world Networks

[D.J. Watts & S.H. Strogatz, Nature, 393, 440-442, 1998]

- Social Networks
- Information Networks
- Biological Networks
- Earthquake Networks
 [Albert and Barabási, 2002]

Collective Dynamics of 'Small-world' Networks

BTW sandpile model

Long-Range Connective Sandpile Model

00 01 02 10 11 12 20 21 22 3 x 3 grid	Beginning Configuration	step 1 particle on cell 22	••••••••••••••••••••••••••••••••••••••	step 3 particle on cell 11
step 4 particle on cell 12	step 5a particle on cell 11	step 5b redistribute cell 11 (0 lost)	step 5c redistribute cell 01 (1 lost)	step 5d (2 lost)
••••••••••••••••••••••••••••••••••••••	step 5f redistribute cell 12 (1 lost)	step 5g redistribute cell 21 (1 lost)	step 5h redistribute (2 lost)	step 5i redistribute cell 00 (2 lost)
••••••••••••••••••••••••••••••••••••••	step 5k redistribute cell 20 (2 lost) L = 12 particle	step 6a particle on cell 01	step 6b redistribute cell 01 (1 lost) AL = 1 particle	step 7 particle on cell 20

5	 5	,		/	
			<u> </u>		
	•				
2 	2	0	() 		

Long-Range Random Connection

- Probability of long-range random connection
 - change of system permeability
 - fingerling channels of pore pressure
 - dynamic triggering of seismic waves

Click
Here
Eull
Article
Altiolo

GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L09404, doi:10.1029/2009GL037330, 2009

GEOPHYSICAL RESEARCH LETTERS, VOL. 37, L16307, doi:10.1029/2010GL043918, 2010

Role of S waves and Love waves in coseismic permeability enhancement

Chi-yuen Wang,¹ Yeeping Chia,² Pei-ling Wang,² and Douglas Dreger¹ Received 16 January 2009; revised 8 April 2009; accepted 16 April 2009; published 15 May 2009.

Detecting low-frequency earthquakes within non-volcanic tremor in southern Taiwan triggered by the 2005 Mw8.6 Nias earthquake

Chi-Chia Tang, 1,2 Zhigang Peng, 2 Kevin Chao, 2 Chau-Huei Chen, 1 and Cheng-Horng ${\rm Lin}^3$

Received 17 May 2010; revised 24 June 2010; accepted 30 June 2010; published 25 August 2010.

Long-Range Connective Sandpile (LRCS) Model Flow Chart

Numerical (LRCS) Sandpile Model

Power-law frequency-size distributions

BTW sandpile model (red circles) LRCS model (blue crosses)

Numerical Sandpile Model (LRCS)

Power-law frequency-size distribution

BTW sandpile model (red circles) LRCS model (blue crosses)

Intermittent Criticality

LRCS model

BTW sandpile model

[Lee et al., 2008 Physica A]

Outline

- Introduction
- Long-Range Connective Sandpile Model
 - -Intermittent Criticality
 - -B-Value decay
 - -B-Value and Hurst Exponent
 - -Quasi-Periodicity
- Conclusion

B-value decay

b Value Decay

Digitally recorded acoustic emission in the laboratory.

b Value Decay

Wu and Chiao, 2006

Digitally recorded acoustic emission in the laboratory.

Slope of Frequency and Event Size

Chen, 2003 Geophys. J. Int.

Outline

- Introduction
- Long-Range Connective Sandpile Model
 - -Intermittent Criticality
 - -B-Value decay
 - -B-Value and Hurst Exponent
 - -Quasi-Periodicity
- Conclusion

Rescaled Range Statistical Analysis [Hurst 1951]

R/S analysis :

$$X(t,\tau) = \sum_{u=0}^{t} \left[q(t) - \left\langle q \right\rangle_{\tau} \right] \Delta t$$
$$\left\langle q \right\rangle_{\tau} = \frac{1}{\tau} \sum_{t=1}^{\tau} q(t)$$
$$R(\tau) = \max_{1 \le t \le \tau} X(t,\tau) - \min_{1 \le t \le \tau} X(t,\tau)$$
$$R(\tau) / S(\tau) \propto \tau^{H}$$

0.5<H: persistent

0<H<0.5: anti-persistent

H=0.5: random

B-Value vs. Hurst Exponent

LRCS model

BTW sandpile model

B-Value vs. Hurst Exponent

[Lee et al., 2009, Geophys. Res. Lett.]

Time Window Selection

B-value vs. H-value

Correlation Coefficient of B-value and H-value

Taiwan Earthquake Catalog

1995-2007

Gutenberg-Richter law

b-values vs. *H*-values for Taiwan Earthquake

Time Window Selection

•Correlation coefficient between *b*- and H-values for De-cluster Earthquake data

Italy Earthquake

Italy Earthquake

•Negative correlation between *b*- and H-value

Outline

- Introduction
- Long-Range Connective Sandpile Model
 - -Intermittent Criticality
 - -b-Value decay
 - -b-Value and Hurst Exponent
 - -Quasi-Periodicity
- Conclusion

Quasi-Periodicity

Periodicity of B- and H-value

Periodicity of big event

Quasi-Periodicity

•Periodicity of B- and H-value vs. system size

Period of Large Event vs. System Size
Parkfield, California, earthquake prediction experience

Parkfield

T = 1857, 1881, 1901, 1922, 1934 and 1966; T_R = 22 years; M =~6.0 ;

Period of Large Event vs. System Size

•Kamaishi, NE Japan earthquake cycle slate

NE Japan

[Matsuzawa et al. GRL, 2002]

 $T_{R} = 5.35$ years; M = 4.8; (A) 1956 - 1999 09.27 62.07.30 68.10.17 73.12.08 79.07.19 85.03.01 90.07.16 95.03.11 M4.9 M4.9 M4.8 M4.8 Magnitude 60 65 70 75 80 Date (Year) 80 85

T = 1957, 1962, 1968, 1973, 1979,

1985, 1990 and 1995;

Characteristic Earthquake Periodicity

Conclusion I

- Alternative sandpile model variant through adaptable long-range connections.
- LRCS model
 - -Intermittent criticality
 - -B-value decay
 - -Negative correlation between *B* and *H* values
 - -Quasi-periodicity

Conclusion II

- Using LRCS model we suggest that the *b*-value reduction before big earthquake might be caused by changes in criticality.
- The statistical parameter Hurst exponent could be as another precursor index.
- The characteristic earthquake have quasiperiodicity behavior.
- Statistical physics methods are useful in understanding complex phenomena of seismicity system by a simple model and rules.

Thanks for your

