青藏高原东南部地区岩石圈结构与形变

Lithospheric structure and deformation of southeastern Tibetan Plateau

姚华建

中国科学技术大学 地球和空间科学学院

合作者: Rob van der Hilst (MIT), Hui Huang (MIT) M. de Hoop (Purdue Univ), Jean-Paul Montagner (IPGP) 刘启元,李昱 (中国地震局地质研究所)

2014年5月23日 台湾国立中央大学

Where is USTC, Hefei, Anhui province

Tectonic evolution of Tibetan Plateau

continental collision between the Indian and Eurasian plates

Royden et al., 2008, Science

Consequences of India-Eurasia collision

- Surface elevation ~ 5 km, crustal thickness 70~80 km
- Eastward extrusion of material from central Tibet
- Active faults and numerous continental earthquakes
- Highly deformed Tibetan Plateau crust

 Debates on deformation mechanisms of the Tibetan Plateau

two end member models:

rigid block extrusion (Tapponnier et al., 1982),

lower crust channel flow (Royden et al., 1997)

Coupled crust-mantle

Decoupled crust-mantle

2007, Wang et al., 2005; 301 et al.

Teleseismic shear wave splitting in SE Tibet : ~ 1 s

Crust shear wave splitting from receiver function: $\sim 0.5-0.9$ s

1. Data and Surface-wave Dispersion Analysis (Ambient Noise + Earthquake Data)

One of the Biggest Breakthroughs in Structural Seismology in 21st Century

Smooth distribution of ambient noise energy will result in relatively small bias of travel times (usually < 1%, Yao & van der Hilst, 2009) although the amplitudes of CFs may vary a lot. **Ambient Noise Cross-Correlation**

 $Z-Z \rightarrow Rayleigh$ T-T $\rightarrow Love$

Inter-station ambient noise cross-correlation (10 – 40 s) \rightarrow Surface wave propagation between stations \rightarrow Vsv / Vsh crustal structure beneath the array

Phase Velocity Dispersion Measurements

Advantages of phase velocity measurements over group velocity measurements

- 1. Better accuracy at longer periods (e.g., T=30s : error in group v \sim 2 x error in phase v)
- 2. Easy to combine with inter-station phase velocity measurements from earthquake data ambient noise: 5-40 s (5-70 km) EQ surface wave: 20-150 s (20-250 km)

Monthly Rayleigh wave phase velocity maps from vertical component EGFs 3.05 April 2004 May 2004 30 3.05 3.05 3.10 3.00 Ø Yao, van der Hilst, de Hoop, 2006 3.05 3.00 ₂₄ a b T = 10 sJuly 2004 June 2004 3.05 3.05 3.00 (đ70 C

Earthquake Data: Two-station analysis

2. Inversion for Lithospheric Structure and Anisotropy

Inversion for shear velocity structure, azimuthal, and radial anisotropy

Step 1: inter-station phase v → azimuthally anisotropic phase velocity maps

 $c(\omega, \psi) = c_0(\omega) [1 + a_0(\omega) + a_1(\omega) \cos 2\psi + a_2(\omega) \sin 2\psi]$

- Step 2: Rayleigh phase velocity maps → 3-D Vsv structure
 Love phase velocity maps → 3-D Vsh structure
 (using Neighborhood algorithm)
- Step 3: Shear velocity radial anisotropy: 2*(Vsh Vsv)/(Vsh + Vsv)
- Step 4: Shear velocity azimuthal anisotropy: $\delta c_{R}(x, y, \omega, \psi) \approx \int_{0}^{H} \left[\frac{\partial c_{R}}{\partial L} \left(\delta L + G_{c} \cos 2\psi + G_{s} \sin 2\psi \right) \right] \frac{dz}{\Delta h}$ Step 2 Transverse isotropic V_{sv} : $\beta_{SV} = \sqrt{\frac{L}{\rho}}$ Mag. of V_{sv} azimuthal aniso : $A_{SV} = \frac{1}{2L} \sqrt{\left(G_{c}\right)^{2} + \left(G_{s}\right)^{2}}$ Fast axis of V_{sv} azimuthal aniso : $\phi = \frac{1}{2} \tan^{-1} \left(G_{s}/G_{c}\right)$

Example of inversion for azimuthally anisotropic phase velocity maps

Yao, van der Hilst, Montagner, 2010, JGR

Checkerboard resolution tests

Yao, van der Hilst, Montagner, 2010, JGR

Examples of inversion results (Radial Anisotropy)

Examples of inversion results (Azimuthal Anisotropy)

3. Results and Discussions

(1) Middle/Low Crustal Low Velocity Zones (LVZs)

- Widespread mid/lower crustal LVZs → possibly mechanically weaker
- Faults may interact with (e.g., truncate) LVZs (need further high resolution studies)
- 3D geometry of LVZs \rightarrow complicated crustal flow pattern if crustal flow exists

Western Sichuan Dense Array Tomography

Liu Qiyuan et al. (2014, Nature Geoscience)

Eastward expansion of Tibetan plateau is controlled by both crustal flow and strain partitioning across faults

Liu et al. (2014, Nature Geoscience)

Comparison with other results:

Crustal LVLs revealed by ambient noise tomography in Tibet

(2) Crustal Radial Anisotropy in SE Tibet and SW China

Huang, Yao, van der Hilst, 2010, GRL

Correlation between LVZ and Radial Anisotropy

Large positive radial anisotropy correlates well with LVZs in the mid/lower crust

Sub-horizontal alignment of anisotropic crustal minerals (e.g., mica, amphibole), consistent with deep crustal flow

Vsv

(3) Azimuthal Anisotropy and Lithospheric Deformation

Complicated deformation pattern of crust and upper mantle

Upper crust: consistent with clockwise rotation

Uppermost mantle: fast direction along the LVZ of the margin of Yangtze block

Yao et al., 2010, JGR

Comparison with teleseismic shear wave splitting

Comparison with body wave tomography

Comparison with body wave tomography

100 km

Upper crust (10km):fast axes // large strike slip faults →faults may control upper crust deformation: simple shear

(4) Some discussions

Heat flow and Tibetan crust strength

Probably weak mid-lower crust

Tibetan lithosphere effective elastic thickness (Te)

Most regions in Tibet and SW China show very low Te (<10 km):

very weak lithospheric strength

maybe dominated by
ductile/plastic
deformation

in support of channel flow model

magnetotelluric (MT) imaging: resistivity

Bai et al. 2010

Two low resistivity channels in the mid-lower crust Distribution of channels is highly connected to faults

Summary

Southeastern Tibetan Plateau: complicated lithospheric structure and deformation patterns

Simple end member model (e.g., rigid block extrusion or lower crust channel flow) is difficult to explain all the geophysical observations!

We need a more sophisticated model for SE Tibet lithospheric deformation!

Effects of uneven noise distribution on tomography

 $C(\theta, \varphi, \psi) = C_0(\theta, \varphi) \{1 + A(\theta, \varphi) \cos(2\psi) + B(\theta, \varphi) \sin(2\psi)\}$

