Bridging the chasm between geophysics and reservoir engineering

Xuri Huang Taiwan May 25, 2014

Acknowledgements

- Society of Exploration Geophysicists
- Sponsored by Shell

SunRise PetroSolutions Tech, Inc.

- BGP, Inc.
- All support Honorary Lecture

Join Today

SEG Membership

- SEG Digital Library full text articles
- Technical Journals in Print and Online
- Networking Opportunities
- Receive Membership Discounts on:
 - Continuing Education Courses
 - Publications (35% off list price)
 - Workshops and Meetings

SEG materials are available today!

Join Online → → http://seg.org/join

Student Opportunities

- Student Chapters available
 Student Chapter Book Program
 - SEG/Chevron Student Leadership Symposium
 - Challenge Bowl
- **Student Membership Resources**
 - **Scholarships**
 - SEG/ExxonMobil Student **Education Program**
 - **Annual Meeting Travel Grants**
 - **Student Expos**
 - the Anomaly newsletter
 - Field Camps
 - **Geoscientists Without Borders**

More information please visit:

Society of Exploration Geophysicists The international society of applied geophysics

SEG Section/Associated Society Opportunities

- Host DL, HL, and DISC Programs
- Council Representation
- Annual Meeting Booth Discount
- Best papers presented at SEG Annual Meetings

 Joint Conferences, Workshops, and Forums in partnership with SEG

For a full list of benefits and other information, please visit: http://seg.org/resources/sections-societies

Outline

- Overview
- Bridging in Data Domain
- Bridging in Model Domain
- Optimization
- Summary

Bridging: Close-the-Loop

Use reservoir and production data to further update seismic interpretation and vice versa

"Bridging" Methodologies

Data-based

Model-based

Material balance Solve for Hydrocarbon in Place Drive Mechanism **Connectivity** Reconcile seismic with spatial information

Data-Based Close-the-Loop

Reservoir Simulation Solve for Pressure Saturation Constrain model to seismic and production history

Model-Based Close-the-Loop 2

Data-based "Close-the-Loop"

- Data consistency analysis
- Interpretation of spatial characteristics using the time-dependent production data

Model-based "Close-the-Loop"

- Common reservoir model
- Comparison of synthetic seismic (4D, prestack, 3D,..., etc.) with observed
- Update model according to seismic and production mismatches
- Reservoir property inversion

Optimization

- Use of historical production data
- Use of seismic data
- Use simplified model constrained by seismic for history matching
- Optimize production system to arrest decline

Data-based "Close-the-Loop" example: A field study

- Field starts to produce in 1989
- A new 3D seismic acquired in 2006, and reprocessed
- Goal: to explore the potential in the field using the new seismic survey

History and Field Decline

Typical seismic to reservoir

- Treat seismic as static
- Correlation with wells
- Co-modeling

Typical seismic to reservoir

- Time-depend.?
- Use of seismic for dynamic behavior?
- Co-engineering?

A procedure for data-based "Close-the-Loop"

Production data + Seismic → Interpretation

Step 1: Screening - Amplitude and Cum. Oil & Cum. Water

Reproc. Amplitude

Seismic attribute and production data patterns consistent

Step 2: Quantified relationship

Favorable correlation indicates consistency of seismic attribute and production data

Step 3: Filtering of amplitude Region growing with wells, matching reserves

Step 4: Remaining potential and aquifer movement

Where to adjust?

Model-based "Close-the-Loop" example 1: Field background

- 15 months production history
 - Original reservoir model available
 - Water-cut matched in general
 - High mismatch observed for individual wells
- Reasonable seismic data
- Goal: improving the *original reservoir model*

History Matching & Seismic

A procedure for model-based "Close-the-Loop"

Step 1: History matching review

Higher mismatches in the central areas of the reservoir

Step 2: Rock model & log calibration

Log Calibration

Log Calibration for A16 (78,18)

Find a rock model which builds a relationship between reservoir properties (dynamic and static) and seismic responses.

Step 3: Seismic mismatches

Screen the synthetic seismic with observed for seismic mismatch

Step 4: Model updating

Thickness modification

Modify the reservoir according to seismic mismatch

Seismic comparison

History matching

Water-Cut

History matching before updating: water-cut

History matching after updating: water-cut

Model-based "Close-the-Loop" example 2: Field background

- Mature field
 - More than 30 year production
 - 2010 seismic
 - More than 200 wells
- Reasonable seismic data
- Goal: update or diagnose geological model using seismic

Step 1: Structure Check & Update

Step 1: Structure Check & Update

Step 1: Structure Check & Update

Step 2: Well Consistency

W119

Step 3: Rock Model

Step 3: Rock Model

Template 1

Template 2

Step 3a: Rock Model-Validation

Error Analysis

	True Tr. Time	Synthetic Tr. Time	Difference
Well	(ms)	(ms)	(ms)
4-7	36.16219	35.92061	0.24158
5-10	36.6594	37.295	-0.63559
5-12	36.97477	37.15802	-0.18325
7-10	35.72214	35.63342	0.088722
7-12	31.50602	30.86014	0.645885
3007	32.69672	32.35389	0.342842
3010	33.49424	33.74509	-0.25085
T33001	32.95722	33.09006	-0.13284
T33003	33.57714	34.05234	-0.4752
bu2-4	28.60338	27.92846	0.674921

Step 4: Time-Shift of Mismatch between Synthetic and Observed

Step 7: Comparison of before and after model update

Step 7: Comparison of before and after model update

Corr. Before Corr. After

Step 7: Comparison of before and after model update

Model-based "Close-the-Loop" example 3:

Seismic Inversion in Reservoir Domain

Background

- Field: producing more than 40 years (1965)
- New 3D seismic acquired (2007)
- Reservoir model available
- Goal: fluid analysis, HM & model updating using existing data

Step1:Rock model Calibration

Step 2: Well log synthetic using templates - Validation

VP: A3-77 VS: A3-j1 67

Step 3: Rock model template

Step 4: Seismic & Reservoir Analysis

Step 5: Grid Mapping

Grid conversion for Poisson's ratio

Step 6: Template inversion

Sw inversion from Poisson's ratio

Step 7: Seismic constrained HM

Water invasion earlier

Model Updating: Perm

HM - Before

HM - After

Comparison

Comparison

Direct adjust using result. and where to adjust

Optimization of Production

Linearization of producer-injector relationship

$$\hat{q}_{j}(t) = \lambda_{0j} + \sum_{i=1}^{I} \lambda_{ij} i_{i}(t), j = 1, 2, ..., N$$

 λ_{ij} the weighting or 'connectivity' factor between injector 'i' and producer 'j'

- \hat{q}_i modeled liquid production rate, RB/D
- i observed injection rate, RB/D

Albertoni (2002)

Use of seismic for injector-producer relationship

Method

- Use seismic spatial attributes, such as time-lapse seismic difference
- Calculate the relationship of injector-producer pairs
- Use the relationship to constrain the weight factor determination (turns into a non-linear problem)

Optimization of waterflooding

Procedure for optimization

$$Q=\lambda I$$
 Given $Q, I \Longrightarrow \lambda$ Connectivity Computing $Q=\lambda I$ Given λ , Perturb $I \Longrightarrow Maximizing Q$

A case study

Difference from 1990, 2001 legacy surveys after reprocessing

Optimization generates a new injection rate distribution by constraining the process using the seismic difference attribute.

Production history matching

Seismic constraint improves the history matching (Liquid in cubic meters).

Pilot implementation

- Injection unchanged outside the pilot area
- Only perturb the injection rate inside the pilot area
- No other enhancement schemes applied

- Pilot implementation result
 - Cumulative oil production increase of 7000 barrels
 - Performance followed up for 3 months

Adjust on operation parameters

Summary

- Through 'bridging' in data domain, seismic data can be used to identify potentials in producing field for production adjustment.
- By 'bridging' in model domain, seismic data can help to update the reservoir model for further model based production optimization.
- It is feasible to use seismic data for production optimization.

Road Ahead

- More robust tool for 'bridging', and tools to 'interact' with all data for seismic and production data interpretation
- Possibility for looping back to geological modeling
- Automatic and interactive tools

Thank you! Questions?

xrhuang@sunrisepst.com

