

深層地下水取樣及水質特性評估 (Deep GW Sampling and Data Evaluation)

林鎮國(Cheng-Kuo Lin) 2014/12/12

摘安

- □「正確」的地下水質資訊,是地下資源開發、保育等工程應用評估的必要資訊。 但「絕對正確」的水質資訊無法取得,只能盡力取得具「代表性」的水質資訊, 再用以推估「理論正確」的水質資訊。水質資訊是否具「代表性」,取決於取 樣、分析過程,以及應用的對象,而水質特性的評估、應用,通常需仰賴電腦 軟體的輔助。
- □本次簡報內容,主要將分享深層地下水取樣設備(ChemWish)、相圖繪製軟體 (PhaseChem),及其應用於地熱開發評估,與高放計畫水文地球化學調查與概 念模式建構的相關研究結果。
- □針對地熱開發評估:只要夠嚴謹,是可由水質分析資料,逆推地熱儲集層的理論溫度;以清水IC-19為例,并口溫度a/o壓力降低,理論上,會沉澱quartz a/o calcite。針對高放計畫水文地球化學調查與概念模式建構:測試區的水質離子濃度低,當深度小於400m深時,地下水質現況均已處於還原環境;應該要包含 32個固體溶解/沉澱反應,方能較完整描素花崗岩區的可能變動情形。

前言

□地下水質是評估/設計地下空間開發、資源利用保育的重要因子:

- ▶材質(金屬、水泥、回填材料、核種)的化學穩定性
- ▶地熱井操作溫壓(管內結垢)、污染物的溶解、吸附

□「正確」的水質資訊是評估/設計的根本

- ≻但「絕對正確」的水質資訊無法取得,只能盡力取得「代表性」的水質資訊,再用以 推估「理論正確」的水質資訊。
- ➢例如:汽水一開瓶後,水質就會一直變化,很難「絕對正確」的定義汽水水質; △ DrivingForce → 0 (2nd law)。

□水質+應用環境(固/氣相、T/P),是評估/設計必須同時考量的因子

> 電腦軟體模擬工具及熱力學/動力學資料庫是必要的!

口「代表性」深層地下水取樣的主要困難點

- >真的取得您想要(像)的水樣?
- >空間限制(e.g., 10 cm)、重量限制、避免干擾(空氣、殘渣)、成本考量...

地下水採樣方法示意圖:兩大分類

<u>地下水通井取樣(1/2)</u>

鐵氟龍採水器(貝勒管)

▶ 最簡單、便宜的取樣方法(法規方法),建議用「可拋棄式管件」,以省下QA/QC費用。

沉水馬達

The second second

Copyright 2014 ITRI工業技術研究院

地下水通井取樣(2/2)

▶ 特殊研究用途的通井取樣方法,如地下水溶解性氣體、高溫地熱流體(氣、液)取樣。 Copyright 2014 ITRI工業技術研究院

2013~2014 QingShui

還原態/瞬間氧化變色

>數據是否具「代表性」,取決於取樣/分析過程,以及您的用途!

		S06	S07	S03	S04
取樣地點		清水IC-19	清水IC-19	清水IC-19	清水IC-19
樣品編號		800m噴流	800m閉井	地表出水201305	800m噴流
採樣日期		2013.11.12	2013.11.13	2013.05.03	2013.05.02
鋼管下放深度	m	802	803	NA	805
採樣前取樣鋼瓶重量	kg	1.667	1.722	NA	1.716
取樣鋼瓶內充填N2壓力	bar	6	6	NA	6
氣動閥門驅動壓力	bar	111	111	NA	111
採樣後取樣鋼瓶重量	kg	1.999	2.048	NA	2.039
採樣前後取樣鋼瓶重量差異	kg	0.332	0.326	NA	0.323
採樣深度溫度(註1)	°C	196	197.5	NA	190
(註1):2013/11/12&13為採樣深度	的實際量測值,2013/04/3	0及2013/05/02為文獻參考	皆值		
壓力相關推估計算值					
採樣深度飽和水蒸氣壓	bar	14.25	14.72	NA	12.51
採樣深度壓力值	bar	52.53	54.93	NA	51.74
取樣鋼瓶內CO2分壓值	bar	4.12	5.40	NA	7.82
液體分析結果					
T(註2)	°C	24.8	21.6	44.5	24.6
EC(註2)	uS/cm	3380	3195	3690	3502
TDS	ppm			1846	2411
ORP(註2)	mV	11	0.9		94
pH(註2)(註8)		6.39	6.27	8.81	6.39

Need for 評估地熱生產井結垢潛能

Ps: 上述資料尚須結合氣體分析結果,逆推至井下條件 Copyright 2014 ITRI工業技術研究院

7

OK for 評估地表發電設備的結垢潛能

For example, the regression expression for quartz is:

 $\log \text{SiO}_{2(\text{ppm})} = [1175.7/T_{(\text{K})}] + 4.88 \text{ (Verma, 2001)}$

According to this regression relation, quartz geothermometer equation is:

$$T(^{\circ}C) = 1175.7/(4.88 - \log SiO_2) - 273.15$$

Geothermometer	Equations (concentration of silica mg/L)	
SiO ₂ (amorphous silica)	$T = 731 / (4.52 - \log SiO_2) - 273.15$	Fournier (1977)
SiO ₂ (-Cristobalite)	$T = 1000 / (4.78 - \log SiO_2) - 273.15$	Fournier (1977)
SiO ₂ (-Cristobalite)	$T = 781 / (4.51 - \log SiO_2) - 273.15$	Fournier (1977)
SiO ₂ (Chalcedony)	$T = 1032 / (4.69 - \log SiO_2) - 273.15$	Fournier (1977)
SiO ₂ (Quartz)	$T = 1309 / (5.19 - \log SiO_2) - 273.15$	Fournier (1977)
SiO ₂ (Quartz steam loss)	$T = 1522 / (5.75 - \log SiO_2) - 273.15$	Fournier (1977)
SiO ₂ (Chalcedony)	$T = 1112 / (4.91 - \log SiO_2) - 273.15$	Arnorsson et al. (1983)
SiO_2 (Quartz steam loss)	$T = 1264 / (5.31 - \log SiO_2) - 273.15$	Arnorsson et al. (1983)
SiO_2 (Quartz steam loss)	$T = 1021 / (4.69 - \log SiO_2) - 273.15$	Arnorsson et al. (1983)
SiO_2 (Quartz steam loss)	$T = 1164 / (4.9 - \log SiO_2) - 273.15$	Arnorsson et al. (1983)

 $T = 1498 / (5.7 - \log SiO_2) - 273.15$

 $T = 1175.7 / (4.88 - \log SiO_2) - 273.15$

Table 5.4.	Silica geot	hermometry	equations.
------------	-------------	------------	------------

SiO₂ (Quartz steam loss)

 SiO_2 (Quartz)

Arnorsson et al. (1983)

Verma (2001)

> T=24.8°C, pH=6.39, Eh=-0.01 volts, fCO2=4.12 bar in cylinder @_surface

Step1: Inverse the water composition back to sealing condition on surface (T=24.8 °C & PCO2 = 4.12 bar)

Step2: Inverse the water composition back to sampling depth condition (Depth = 800m, T=197.5 °C)

T=197.5°C, pH=6.40, Eh=-0.16 volts, fCO2=15 bar @ sampling depth

Copyright 2014 ITRI工業技術研究院

From T=197.5°C, pH=6.40, Eh=-0.16 volts, fCO2=15 bar @ sampling depth,

- Calcite沉澱速度很快,主要將結垢於上層井內(閃發點附近),可採用equilibrium模擬。
- ➢ Quartz 的沉澱潛勢雖高,但沉澱速率很慢,但全井均有可能結垢,須用kinetics模擬;△SpaceTime取決於生產操作,正常操作應該 < 1hr。 Copyright 2014 ITRI工業技術研究院

地下水封塞取樣方法

電力趨動(馬達)抽水模組

Umbilical CHEMMAC(SKB)

氣壓趨動抽水模組

And the Party of t

With Street

以500m深度為例,井下設備總重約1.5噸,地表捲揚設備至少2噸,設備搬運、吊掛需特別考量。 >在直徑約10cm的深孔內,需要安裝眾多設備及管路,如何不卡井是一大挑戰!

Source: Laaksoharju et al. (1995), Freifeld et al. (2005) Copyright 2014 ITRI工業技術研究院

不論通井或封塞取樣・取樣前必須先抽水洗井(1/2)

抽水洗井過程水質變化(由混濁至清澈)

State of the state

一定可以取得到水樣,但取得什麼水樣需深思!(鑽孔過程中一定會在孔內殘留外來物質)
沒有代表性的樣品,後續分析儀器再精良,也只是浪費時間與金錢!

The second second

- ➤ 在直徑約10cm的深孔內,任何東西進入,均會擾動水質或阻塞裂隙導水通道!
- ➢ 操作時間 = Time(days) + 2天設備安裝 ∘

工業技術研究院

Industrial Technology

GW Sampling Zone

- Contraction of the

Strate Street

▶ 一旦需要現場臨時改變決定時,通常是場豪賭,經驗要夠豐富,心臟要夠強!

封塞抽水洗井監測資料範例

2071

171

KMBH01 in 7GZ (maded-off zero) = /89.1-493.1m 1 2003/04/15-2003/04/23

KMBH05 in POZ (meked-off zone) = 25£49-260.5 m ; 2007/01/24-2007/01/29

KMBH04 in FOZ (packed-off some) = 299.0-271.0m : 2004/10/27-2004/10/28 Line: 10a 100 ct ste from POZ o 173 liner /d Packer inflatio 34 Packer deflation 40 <0 \sim cycle: OnTime = 1 Offlime = 4 min Domor choset dome n(1) බ l:c 20 30 ŝ 91 ı, 小菜 -20 -236 value for POZ 41 ш stri i -0.00 30 110 20 vāi. 10 La. 180 140 SIL 102102-00211

▶ 一次性封塞水力傳導試驗結果的意義?

ChemWish (ITRI)

(Chemical and Hydraulic Exploration Marlinespike for groundWater Isolated in a boreHole)

PluseSlugTest2009035@KM BH06@498m

KMBH03 in POZ (packed-off zone) = 478.74-480.86m : 2006/05/23-2006/05/25

Redox (mV) in POZ - Pressure (dbar) in POZ - 350 - [EC (mS/cm) in POZ - 1]*10 - [pH in POZ - 6]*10

Water pumping rate from POZ ~ 1.2 liter /hour ; 28.8 liter /day

] 功能:

▶ 取得深地層導水構造的代表性水樣a/o水質。

技術特點:

- > 裸孔操作深度可達1,000 m。
- > 垂直/傾斜探勘井。

KMBH06 in POZ (packed-off zone) = 498.5~501.0m ; 2009/06/24~2010/01/11

Time (hr)

And the Party of t

With Street

PulseSiugTest(PX=7bar)(20090305:1316; Start C hemWish-F04); G WV=5 cc Water pumping cycle: OnTime = 60 sec ; OffTime = 60 sec 490 Total volume of water be pump out from the POZ = 67 lite Pulse Test Slug Test 485 480 -20 **NUMBER** 476 -situ monitoring of groundwater qualit 470 -20 in POZ during purging for sampling in POZ 40 465 461 ыth 455 456 -330 24000 1000 1500 YO: IS 19(1) time (sec) Term, cours.

500

495

- ChemWish is a R&D carrier for downhole hydrogeochemical experiments
- The exact configuration of ChemWish is case by case!
- 出生地:金門

History of ChemWish

1999~2000 WuChou

2003 Kinman

2008~2010 Kinman

2013~2014 QingShui

to be continued...

Copyright 2014 ITRI工業技術研究院

GW Property of Kinmen

The search is

Deep Groundwater (pack-off sampling)

рH

/8°

ୃତ୍କ

Ô

Property Share

°O

Z°

40%

Pool

Ca

20%

SO

-

- 地下水水質很淡,有些深度地下水年齡超過1萬年(max≅14ka, KMBH06@500m)。 % \geq 深於400m的地下水,地下水大致呈現微鹼及還原特性(pH>8及 Eh<0)。 \geq
- 部份地區在上次冰期時,可能處於高度蒸發(沙漠化)環境(KMBH05)(Liou et al., 2008)

Copyright 2014 ITRI工業技術研究院

工業技術研究院 物種穩定性評估(e.g., Eh-pH D<u>iagram)</u>

□又稱為Pourbaix diagram:

- ➤ Marcel Pourbaix:金屬材質腐蝕科學之父。
- ▶ 生於1904 (Myshega, Russia) · 卒於1998/09 (Brussels, Belgium) •
- >於1938年建構Eh(potential)-pH diagrams。
- Atlas of Electrochemical Equilibria in Aqueous Solutions _ (1966) °
- Atlas of Chemical and Electrochemical Equilibria in the Presence of a Gaseous Phase] (1996) •

□Eh-pH穩定相圖:

Industrial Technology Research Institute

- ▶經由基礎熱力學理論的計算結果所繪製而成的相圖, 用以探討特定原子(如右圖中的Fe)在不同化學條件下的穩定型態。
- ▶相圖中任何一點代表特定原子在該Eh及pH條件下之 熱力學的穩定「相」。
- ➤在不同溫度、壓力、離子濃度條件下,會有不同的穩 定相圖。
- ≻無法顯示任何反應動力學(腐蝕速率)資訊;可用以決定溶解度的「極限值」,但無法決定溶解度的「確定」) 值」
- ▶應用領域:金屬腐蝕特性研究、濕法冶金程序設計、 材料(金屬、核種)穩定性研究。

工業技術研究院 Industrial Teneer modynamic Stability of UO2 and Cu @ 80 °C

Average GW properties (400 m to 500 m): Age (C-14 Dating) = 8,000 to 14,000 B.P., T \cong 32 °C, pH \cong 9, Eh \cong -400 mV.

Temperature Effect

工業技術研究院 Industrial Technology Research Institute

Temperature Effect

Stability Criteria

Stability Criteria: solubility $< 10^{-6} mole/kgW \text{ or } < 10^{-9} mole/kgW$?

Component Effect

Component Effects: Although Soddyite (U2SiO10H4) is a theoretically stable solid phase for U in an oxidation and Si rich environment, the existence/precipitation of Soddyite for retarding the U migration should be ignored for conservative consideration. The conversion from Uraninite to Soddynite could be a kinetic controlled process.

Redox Rxn (1/3): Fe(II)/Fe(III)

Redox Rxn (2/3): S(+VI)/S(-II)

工業技術研究院 Industrial Technology Research Institute

Redox Rxn (3/3): formation of pyrite

Source of Kaolinite?

However, during their weathering, their could be some intermediate minerals(s) (e.g., saponite, nontronite, etc.).

工業技術研究院 Industrial Technology Research Institute

Source of Muscovite, Illite & Mont.?

PhaseChem

(A Window Application for Building Eh-pH and Activity-Activity Diagrams)

Special Design for Data Interpretation - PhaseChem

Designed by ITRI-ERL-AmemLin: 2004

PhaseChem use the most internal consistence thermodynamic database from EQ3/6!

GWB (The Geochemist's Workbench)

University of Illinois Essential : 799 US\$ Professional: 7,999 US\$

工業技術研究院 Industrial Technology Research Institute GWB & PhaseChem @N3T25°C

工業技術研究院 Industrial Technology Research Institute GWB & PhaseChem @N3T80°C

Copyright 2014 ITRI工業技術研究院

工業技術研究院 Industrial Charlet WB & PhaseChem @N10T25°C Sea

Copyright 2014 ITRI工業技術研究院

工業技術研究院 Industrial Charlet WB & PhaseChem @N10T80°C Sea

Copyright 2014 ITRI工業技術研究院

38

工業技術研究院 Industrial Technology Research Institute GWB&PhaseChem U@T80°C

Solubility of Cu Se and U at pH=8.6; GWB 8.0, Database = thermo.com.v8.r6+.dat

Cu(31℃) - - Cu(80℃) - UO2(31℃) - - UO2(80℃) UO2.3333(beta)(31℃) - - UO2.3333(beta)(80℃) - Se(31℃) - - Se(80℃)

Solubility of Cu > Se and U at pe=-5.73 ; GWB 8.0, Database = thermo.com.v8.r6+.dat

(記得氧化還原電位量測數據要進行參考電極修正為標準氫電極·才是Eh值) Copyright 2014 ITRI工業技術研究院

正確?

□前面的評估假設:水質數據「絕對正確」(符合熱力學密 閉系統條件)

▶「取樣」過程一定是「開放系統」,已違反「密閉系統」條件!▶適度的修正是有必要的,如何修正取決於想要探討的問題!

如何修正取決於問題(用途)

Reaction Networks

Т	Reactions	logK25
1	Quartz (SiO ₂); SiO ₂ \Leftrightarrow SiO _{2(aq)}	-3.9993
1	Maximum_Microcline (KAlSi ₃ O_8); KAlSi ₃ O_8 + 4 H ⁺ \Leftrightarrow K ⁺ + Al ⁺⁺⁺ + 3 Si $O_{2(aq)}$ + 2 H ₂ O	-0.2753
2	Albite_low (NaAlSi ₃ O ₈); NaAlSi ₃ O ₈ + 4 H ⁺ \Leftrightarrow Na ⁺ + Al ⁺⁺⁺ + 3 SiO _{2(aq)} + 2 H ₂ O	2.7645
2	Anorthite $(CaAl_2(SiO_4)_2)$, type= Feldspar; $CaAl_2(SiO_4)_2 + 8 H^+ \Leftrightarrow Ca^{++} + 2 Al^{+++} + 2 SiO_{2(aq)} + 4 H_2O$	26.5780
2	Phlogopite $(KAlMg_3Si_3O_{10}(OH)_2)$, type = Mica; $KAlMg_3Si_3O_{10}(OH)_2 + 10 H^+ \Leftrightarrow K^+ + Al^{+++} + 3 Mg^{++} + 3 SiO_{2(aq)} + 6 H_2O$	37.4400
2	Annite $(KFe_3AlSi_3O_{10}(OH)_2)$, type = Mica; $KFe_3AlSi_3O_{10}(OH)_2 + 10 H^+ \Leftrightarrow K^+ + 3 Fe^{++} + Al^{+++} + 3 SiO_{2(aq)} + 6 H_2O$	29.4693
1	Epidote ($Ca_2FeAl_2Si_3O_{12}OH$); $Ca_2FeAl_2Si_3O_{12}OH + 13H^+ \Leftrightarrow 2Ca^{++} + Fe^{+++} + 2Al^{+++} + 3SiO_{2(aq)} + 7H_2O$	32.9296
2	Daphnite-14A ($Fe_5AlAlSi_3O_{10}(OH)_8$), type = Chlorite; $Fe_5AlAlSi_3O_{10}(OH)_8 + 16 H^+ \Leftrightarrow 5 Fe^{++} + 2 Al^{+++} + 3 SiO_{2(aq)} + 12 H_2O_{2(aq)} +$	52.2821
2	Clinochlore-14A $(Mg_5Al_2Si_3O_{10}(OH)_8)$, type = Chlorite; $Mg_5Al_2Si_3O_{10}(OH)_8 + 16 H^+ \Leftrightarrow 2Al^{+++} + 3 SiO_{2(aq)} + 5Mg^{++} + 12 H_2O$	67.2391
2	Tremolite $(Ca_2Mg_5Si_8O_{22}(OH)_2)$, type =Amphibole; $Ca_2Mg_5Si_8O_{22}(OH)_2 + 14 H^+ \Leftrightarrow 2 Ca^{++} + 5 Mg^{++} + 8 SiO_{2(aq)} + 8 H_2O$	61.2367
2	Anthophyllite $(Mg_7Si_8O_{22}(OH)_2)$, type =Amphibole; $Mg_7Si_8O_{22}(OH)_2 + 14 H^+ \Leftrightarrow 7Mg^{++} + 8 H_2O + 8 SiO_{2(ag)}$	66.7965
2	Diopside ($CaMgSi_2O_6$), type = Pyroxene; $CaMgSi_2O_6 + 4H^+ \Leftrightarrow Ca^{++} + Mg^{++} + 2SiO_{2(aq)} + 2H_2O$	20.9643
2	Hedenbergite ($CaFe(SiO_3)_2$), type = Pyroxene; $CaFe(SiO_3)_2 + 4H^+ \Leftrightarrow Ca^{++} + Fe^{++} + 2SiO_{2(aq)} + 2H_2O$	19.6060
2	Andradite $(Ca_3Fe_2(SiO_4)_3)$, type = Garnet; $Ca_3Fe_2(SiO_4)_3 + 12 H^+ \Leftrightarrow 3 Ca^{++} + 2 Fe^{+++} + 3 SiO_{2(aq)} + 6 H_2O_{2(aq)} + 6 H_2$	33.3352
2	Grossular $(Ca_3Al_2(SiO_4)_3)$, type = Garnet; $Ca_3Al_2(SiO_4)_3 + 12 H^+ \Leftrightarrow 3 Ca^{++} + 2 Al^{+++} + 3 SiO_{2(aq)} + 6 H_2O$	51.9228
1	Zoisite $(Ca_2Al_3(SiO_4)_3OH)$; $Ca_2Al_3(SiO_4)_3OH + 13H^+ \Leftrightarrow 2Ca^{++} + 3Al^{+++} + 3SiO_{2(aq)} + 7H_2O^{-1}$	43.3017
1	$\mathbb{T}_{\mathbf{U}} = \mathbb{T}_{\mathbf{U}} = \mathbb{T}_{\mathbf{U}} + $	13.5858
1	$Calche (Call_3); Cacl_3 + A^+ \Leftrightarrow Ca^{++} + HCO_3^{++} = 32^{+} + 3010^{+} + 153^{+} = 32^{+} + HCO_3^{+} = 32^{+}$	1.8487
1	Pyrite (FeS_2) ; $FeS_2 + H_20 \iff Fe^{++} + 0.25 SO_4^{} + 1.75 HS^- + 0.25 H^+$	-24.6534
1	Kaolinite $(Al_2Si_2O_5(OH)_4)$; $Al_2Si_2O_5(OH)_4 + 6H^+ \Leftrightarrow 2Al^{+++} + 2SiO_{2(aq)} + 5H_2O$	6.8101
1	Magnetite (Fe_3O_4) ; $Fe_3O_4 + 8H^+ \Leftrightarrow Fe^{++} + 2Fe^{+++} + 4H_2O$	10.4724
1	Ilmenite ($FeTiO_3$); $FeTiO_3 + 2H^+ + H_2O \Leftrightarrow Fe^{++} + Ti(OH)_{4(aq)}$	0.9046
2	Hematite (Fe_2O_3) , type = end member of illite; $Fe_2O_3 + 6H^+ \Leftrightarrow 2Fe^{+++} + 3H_2O$	0.1086
2	Fluorapatite $(Ca_5(PO_4)_3F); Ca_5(PO_4)_3F + 3H^+ \Leftrightarrow 5Ca^{++} + 3HPO_4^{} + F^-$	-24.9940
3	Dawsonite $(NaAlCO_3(OH)_2)$; $NaAlCO_3(OH)_2 + 3H^+ \Leftrightarrow Al^{+++} + HCO_3^- + Na^+ + 2H_2O_2^-$	4.3464
3	Dolomite $(LaMg(LU_3)_2)$; $LaMg(LU_3)_2 + 2H^+ \Leftrightarrow La^{++} + Mg^{++} + 2HLU_3$	2.5135
3	Subject to the state of the st	26.2900
3	$Vontronite_Ca (Ca_{a,c,c} \in Fe_{a}) = 0 $	-11 5822
	$Ca_{0.165}Fe_2Al_{0.33}Si_{3.67}O_{10}(OH)_2 + 7.32 H^+ \Leftrightarrow 0.165 Ca^{++} + 2 Fe^{+++} + 0.33 Al^{+++} + 3.67 SiO_{2(aa)} + 4.66 H_2O$	11.5022
3	Nontronite-Na (Smectite, $Na_{0.33}Fe_2Al_{0.33}Si_{3.67}O_{10}(OH)_2$), type = Smectite;	-11.5263
	$Na_{0.33}Fe_2Al_{0.33}Si_{3.67}O_{10}(OH)_2 + 7.32H^+ \Leftrightarrow 0.33Na^+ + 2Fe^{+++} + 0.33Al^{+++} + 3.67SiO_{2(aq)} + 4.66H_2O$	
1	$\operatorname{Zircon}\left(ZrSiO_{4}\right); \ ZrSiO_{4} + 2 \ H^{+} \Leftrightarrow \ Zr(OH)_{2}^{++} + SiO_{2(ag)}$	-15.4193
3*	Gypsum (CaSO ₄ : 2H ₂ O); CaSO ₄ : 2H ₂ O \Leftrightarrow Ca ⁺⁺ + SO ₄ + 2H ₂ O	-4.4823
3*	Illite (Illite, $K_{0.6}Mg_{0.25}Al_{2.3}Si_{3.5}O_{10}(OH)_2$), type = Illite; $K_{0.6}Mg_{0.25}Al_{2.3}Si_{3.5}O_{10}(OH)_2 + 8 H^+ \Leftrightarrow 0.25 Mg^{++} + 0.6 K^+ + 2.3 Al^{+++} + 3.5 SiO_{2(aq)} + 5 H_2O_{2(aq)} $	9.0260
4	$OH^- + H^+ \Leftrightarrow H_2O$	13.9951

結論(1/2)

口一般性:

>國內目前已具備取得深層地下水「代表性」水樣的能力。

- 通井(GTFSampler, ITRI) : $Max.T = 204^{\circ}C \& Max.P = 77 bar$
- 封塞(ChemWish, ITRI) : HQ, 1000 m
- ▶「正確」的水質資訊是評估/設計的根本
 - 「絕對正確」的水質資訊無法取得,只能盡力取得「代表性」的水質資訊,再用以推估「理論正確」的水質資訊;如何修正取 決於問題(用途)。
- ▶洗井很貴,但絕對必要!

≻PhaseChem雖然計算速度慢,但複雜系統仍會收斂。

□地熱開發評估:

≻只要夠嚴謹,是可由水質分析資料,逆推地熱儲集層的理論溫度。

- ▶以清水IC-19為例·井口溫度a/o壓力降低·理論上·會沉澱quartz a/o calcite。
 - Calcite沉澱速度很快,主要將結垢於上層井內(閃發點附近),可採用equilibrium模擬。
 - Quartz 的沉澱潛勢雖高,但沉澱速率很慢,但全井均有可能結垢,須用kinetics模擬。

□高放計畫地化概念模式:

▶地下水質現況:

- 測試區水質離子濃度低,當深度小於400m深時,現況已處於還原環境(Eh<0)。
- ▶應該要包含32個固體溶解/沉澱反應、55個溶液相/氣液相反應,方能較完整 描素花崗岩區的可能變動情形:
 - 氧化還原反應:
 - ◆ 必須考量能完整描述Fe(II)/Fe(III)及S(-II)/(VI)的氧化還原反應。
 - 黏土次生礦物來源:
 - ◆ kaolinite可能「原始」來自於albite的風化 · muscovite可能「原始」來自於microcline的風化 · 但在風化過程中可 能存在某些中間產物(如montmorillinite, saponite, nontronite等黏土礦物)。

▶水質變動範圍:

● 針對處置坑封閉後,其周圍水文地球化學環境可能面臨的pH及Eh範圍(未受人為因素干擾之導水裂隙水 質; CaseZ2&Z4),應包含:

6.99 \leq pH \leq 9.75 , -0.45 volts \leq Eh \leq -0.17 volts \circ

- 上述pH及Eh變動範圍,其所對應的核種溶解度變化,及K_d值的變化,應被適度考量在後續的功能安全評估模擬過程中。
- 針對處置坑運轉期間,其周圍水文地球化學環境的變動範圍(CaseZ3),可能界於:
 - $6.71 \le pH \le 10.41$ · -0.58 volts $\le Eh \le 0.81$ volts °
 - 但上述pH及Eh變動範圍,其影響時間非常的短暫。

簡報完畢 敬請指正