

# Numerical Simulation of Fault Systems with Virtual Quake Eric Heien

John Rundle, Michael Sachs, Kasey Schultz, Mark Yoder, Donald Turcotte University of California, Davis



4/10/15

#### Overview



- Introduction
- The Computational Infrastructure for Geodynamics
- Virtual Quake
- Research Code Development Guidelines



### My Background



- University of California, Berkeley 2002
- Ph.D. Computer Science, Osaka University, 2010
- Postdocs at UCDavis, INRIA Grenoble Rhone-Alpes
- My research orientation is scientific computation with a computer science focus
- Past projects include work in radio and optical astronomy, symbolic mathematics, evolutionary algorithms, large scale computing systems, biophysics simulations, supercomputer system analysis, geophysics simulation
- Until recently, worked at Computational Infrastructure for Geodynamics (CIG) at UCDavis











- Computational Infrastructure for Geodynamics
- NSF funded research center
- CIG I started in 2005 at California Institute of Technology
- CIG II moved to the University of California, Davis in 2010
- CIG III scheduled to start in 2015 at UCDavis
- 72 member institutions and international affiliates around the world
- Goal is to "[advance] earth science by developing and disseminating software for geophysics and related fields"
- CIG provides training for earth scientists, organizes workshops, develops research code
- Homepage is at <a href="http://geodynamics.org/">http://geodynamics.org/</a>





- Why rewrite geophysics codes that have been already written? Don't!
- "If I have seen further it is by standing on the shoulders of giants." Isaac Newton
- CIG supports researchers and scientists to share and reuse geophysics scientific code
- Covers a wide range of solid earth disciplines including seismology, short term tectonics, long term crustal deformation, mantle convection, geodynamo
- I'll briefly discuss some codes that may be useful to your research
- All these and more are available at geodynamics.org/cig/software/



CIG

- Specify a source mechanism and topography, then determine ground acceleration and shaking at different locations
- Used for seismic tomography inversions

- **SPECFEM** 
  - Numerical modeling of seismic wave propagation using spectral elements
  - Multiple variants, including SPECFEM1D, SPECFEM2D, SPECFEM3D Cartesian, SPECFEM3D Globe







#### SPECFEM



- Simulate seismic wave propagation through hypothetical model
- Compare synthetic seismograms with actual seismograms
- Update mantle/crust material model accordingly



Initial mantle tomography (left) and iteratively refined tomography (right)

- Allows for high resolution imaging of whole earth structure
- Huge computational cost (10<sup>3</sup> or more core-years)







• Example visualization of SPECFEM3D simulation of 1964 Alaska M9.2 earthquake



#### SW4

- Seismic wave propagation modeling with arbitrary 3D heterogeneous material
- User specified source function
- Free surface condition on top boundary (allows arbitrary topography)



COMPUTATIONA

- Developed at Lawrence Livermore National Laboratory
- Used for ground motion prediction
- Available at geodynamics.org/cig/software/sw4/



#### AxiSEM



- Spectral element method for 3D (an-)elastic, anisotropic and acoustic wave propagation in spherical domains
- Uses 2.5D approach for fast computation – spherical shell layers are assumed homogeneous
- Uses series of multipoles to calculate response to point source
- Generate synthetic seismograms from source functions propagated through whole globe at high frequencies
- Available at geodynamics.org/cig/software/axisem/





# PyLith

CI C COMPUTATIONAL INFRASTRUCTURE for GEODYNAMICS

- Finite element code for dynamic and quasistatic simulations of crustal deformation, primarily earthquakes and volcanoes
- Primarily used to do highly detailed study of stress buildup and rupture process of a single fault
  - Strain accumulation associated with interseismic deformation
  - Coseismic stress change and fault slip
  - Postseismic relaxation of the crust
- Available at geodynamics.org/cig/software/pylith/





- CIC COMPUTATIONAL INFRASTRUCTURE for GEODYNAMICS
- Virtual Quake (VQ) is a boundary element code that performs simulations of fault systems based on stress interactions between fault elements
- Allows statistical study of fault system behavior and interaction
- Over 100 downloads of the software from dozens of countries
- Freely available at geodynamics.org/cig/software/vq







#### Overview



- Introduction
- The Computational Infrastructure for Geodynamics
- Virtual Quake
- Research Code Development Guidelines





- First version written by Prof. John Rundle in 1988
   Could only model small strike slip fault systems
- Updated in early to mid-2000s by Yakovlev to include major strike-slip faults in California and named "Virtual California"
- In 2010 rewritten by Heien to allow parallel simulation, arbitrary fault systems
- Advanced tools for visualization and analysis written in 2011-2013
- Renamed "Virtual Quake" and publicly released in 2014





- Ensemble-domain vs. time-domain simulations
- Time-domain: Understand system behavior by time stepping through single system
  - Generally finite element, or finite difference
  - Examples: SPECFEM, AxiSEM, PyLith
  - Pros: based on PDE rules, can confirm results compared to analytical solutions
  - Cons: very sensitive to initial conditions, very sensitive to model configuration, expensive to calculate (months or years of computer time)





- Ensemble-domain: Understand system behavior in a statistical manner by studying multiple systems
  - Examples: Virtual Quake, climate simulations
  - Pros: less sensitive to initial conditions or system configuration, can be less expensive to calculate (hours or days of computer time)
  - Cons: difficult to exactly compare with mathematical or experimental models
- We don't know the current stress state of the faults
  - Run an ensemble of simulations to determine which paths (series of earthquake events) are most likely





- In VQ the earthquake cycle is divided into two parts
  - Long term stress accumulation (slider block model)
  - Rapid release of stress during rupture
- Long term stress accumulation
  - Displacements of faults in the crust generate stress in surrounding areas
  - Displacement is modeled by movement of fault patches at a specified constant rate (long term slip rate)
  - Fault patches do not actually move over time, but rather slip back to their original position during a rupture event



Courtesy (Bak, 1996)





- Release of stress during rupture
  - Fault element failure (rupture) is determined by Coulomb failure function (CFF)
  - Faults can experience either static or dynamic failure
  - Static failure: normal stress is overcome by shear stress and fault fails (CFF > 0)
  - Dynamic failure: change in stress during a rupture is high enough that element fails while CFF < 0</li>
  - Rupture occurs in multiple steps, or "sweeps" (shown right)







- Simulation flow
  - Stress accumulation in blue
  - Rupture propagation in purple





- Fault System Mesher
  - Before running a simulation, fault geometry must be specified
  - Define points along fault traces and specify fault parameters at each point (depth, rake, dip, etc)
  - The mesher creates a set of elements corresponding to the faults with the specified parameters
  - The simulation uses this mesh to calculate stress interaction and rupture mechanics

California fault system meshed with 3km x 3km elements







- Mesher supports:
  - Input from fault traces (CA faults included with VC), EQSim format
  - Output to ASCII, HDF5, KML
  - Mixing elements of different resolution
  - Simple addition/removal of faults
  - Merging duplicate vertices to reduce space, clarify fault element connectivity
  - Automatic stress/friction calculation appropriate to model

| 🏢 TableView – vertices – / – /Users/eheien/Downl 🗹 🛛 |    |           |           |           |   |  |  |  |  |
|------------------------------------------------------|----|-----------|-----------|-----------|---|--|--|--|--|
| <u>T</u> able                                        | M  |           |           |           |   |  |  |  |  |
| 0, id = 0                                            |    |           |           |           |   |  |  |  |  |
|                                                      | id | latituda  | longituda | altituda  |   |  |  |  |  |
| 0                                                    | 0  | 33 987    | _119.48   | 0.0       |   |  |  |  |  |
| 1                                                    | 1  | 33,967983 | -119.482  | -2121.122 |   |  |  |  |  |
| 2                                                    | 2  | 33,98408  | -119.447  | 0.0       |   |  |  |  |  |
| 3                                                    | 4  | 33.94897  | -119.484  | -4242.244 |   |  |  |  |  |
| 4                                                    | 5  | 33.96507  | -119.4502 | -2121.122 |   |  |  |  |  |
| 5                                                    | 7  | 33.929955 | -119.487  | -6363.36  |   |  |  |  |  |
| 6                                                    | 8  | 33,946053 | -119.452  | -4242.244 |   |  |  |  |  |
| 7                                                    | 10 | 33.91094  | -119.489  | -8484.488 |   |  |  |  |  |
| 8                                                    | 11 | 33.92704  | -119.455  | -6363.36  |   |  |  |  |  |
| 9                                                    | 13 | 33.965046 | -119.449  | -2123.95  |   |  |  |  |  |
| 10                                                   | 14 | 33.981827 | -119.415  | 0.0       |   |  |  |  |  |
| 11                                                   | 15 | 33.965046 | -119.449  | -2123.95  | 1 |  |  |  |  |
| 12                                                   | 16 | 33.94601  | -119.451  | -4247.90  |   |  |  |  |  |
| 13                                                   | 17 | 33.96279  | -119.417  | -2123.95  |   |  |  |  |  |
| 14                                                   | 18 | 33.94601  | -119.451  | -4247.90  |   |  |  |  |  |
| 15                                                   | 19 | 33.92698  | -119.453  | -6371.85  |   |  |  |  |  |
| 16                                                   | 20 | 33.94376  | -119.419  | -4247.90  | 1 |  |  |  |  |
| 17                                                   | 21 | 33.92698  | -119.453  | -6371.85  | 1 |  |  |  |  |
| 18                                                   | 22 | 33.907944 | -119.455  | -8495.809 |   |  |  |  |  |
| 19                                                   | 23 | 33.924725 | -119.421  | -6371.85  |   |  |  |  |  |
| 20                                                   | 24 | 33.981827 | -119.415  | 0.0       |   |  |  |  |  |
| 21                                                   | 25 | 33.962738 | -119.416  | -2120.46  |   |  |  |  |  |
| 22                                                   | 26 | 33.98     | -119.382  | 0.0       |   |  |  |  |  |
| 23                                                   | 27 | 33.962738 | -119.416  | -2120.46  |   |  |  |  |  |
| 24                                                   | 28 | 33.94365  | -119.418  | -4240.93  |   |  |  |  |  |
| 25                                                   | 29 | 33.96091  | -119.384  | -2120.46  |   |  |  |  |  |
| 26                                                   | 30 | 33.94365  | -119.418  | -4240.93  |   |  |  |  |  |
| 27                                                   | 31 | 33.92456  | -119.420  | -6361.40  | - |  |  |  |  |

HDF5 CA Model File

21









Southern CA faults meshed at 3km resolution (left) and 500m resolution (right)



- Long term stress accumulation
  - Interaction between fault elements is modeled by Okada implementation<sup>[1]</sup> of stress transfer Greens function
  - Functions relate point or rectangular patch displacement to surrounding a) displacement field,
     b) stress field, c) gravity changes
  - Interactions between N elements is stored as an NxN matrix

[1] Internal Deformation Due to Shear and Tensile Faults in a Half-Space, Y. Okada 1992

Strike slip fault stress field (top view)







- Long term stress accumulation
  - Calculate stress interaction between all elements and store in a matrix where T<sup>AB</sup> is the stress change on A caused by B moving a unit distance
  - Buildup of stress on element A is determined by

$$\sigma_{ij}(x,t) = \int dx'_k T^{kl}_{ij}(x-x')s_l(x',t)$$

- or in the matrix notation

$$\sigma_{ij}^A(t) = \sum T_{ij}^{AB} s_B(t)$$

- This is equivalent to a matrix-vector multiply







- Initial fault element failure
  - VQ uses the CFF (Coulomb Failure Function) to determine when an element fails

$$CFF^{A}(t) = \sigma_{s}^{A}(t) - \mu_{s}^{A}\sigma_{n}^{A}(t)$$

- VQ treats normal stress as constant and shear stress as increasing, so eventually a fault will fail due to the CFF criteria
  - Can have variable normal stress for thrust faults
- An element fails when CFF > 0, which means shear stress overrides normal stress and friction







- Rupture propagation
  - For a failed element, initial slip is determined by the relation  $\Delta s = \frac{1}{K_L} (\Delta \sigma CFF)$ . where K<sub>1</sub> is the self-shear stress of the element
  - In previous versions of VQ (and most other similar codes), element slip was prescribed in the model by modifying the stress drop ( $\Delta\sigma$ )
  - This allowed the user to force faults to have arbitrary magnitude earthquakes
  - In the current version of VQ, initial slip is determined mathematically to ensure faults obey scaling laws







- Rupture propagation
  - After elements have been processed, we determine if more elements will fail
  - Elements can rupture due to static failure (CFF>0) or dynamic failure
  - Dynamic failure occurs if  $\frac{CFF_{init} CFF_{final}}{CFF_{init}} > \eta$ and corresponds to how likely the crack tip will propagate
  - The value of η determines how much a rupture will grow (small η means larger earthquakes)





# ration

Rupture propagation

Virtual Quake

- We have tried using rate state friction based on the standard formulation
- This is an advanced friction model that allows for fault healing and slow stress buildup
- Nondimensional version on the equations is shown to the right
- For a single block within a range of parameters this works as a good model
- However, because of the ln(V) and
  ln(Θ) terms in the force, V and Θ must not become negative
- With coupled block systems you cannot guarantee these will not be negative because of the interaction with other blocks
- Most "rate-state" simulators use a simplified form of these equations







COMPUTATIONAL INFRASTRUCTURE for GEODYNAMICS

- The parameter η must be tuned to best match actual magnitudefrequency distributions
- In our experience, η=0.4 to 0.8 is generally best
- Plots on the right show how well frequency magnitude corresponds to common models
  - Top is UCERF2 observed seismicity
  - Bottom is Wells and Coppersmith relation
- Within the η=0.5 to 0.7 range we get good fit to observed seismicity



CI CI COMPUTATIONAL INFRASTRUCTURE for GEODYNAMICS

- By running a long simulation and analyzing the event catalog, we can make forecasts about interval times
- Figure on the right shows the conditional cumulative probability of a M≥7.0 earthquake on forecasted faults (Northern CA)



- Based on event catalog from VQ simulation covering thousands of years (multiple event cycles)
- Distribution is evaluated at  $t=t_0+\Delta t$  with the last earthquake occurring  $t_0$  years ago



- Forecast waiting times for next M≥7.0 earthquake on northern CA faults
- Dark line is median waiting time (50% probability)
- Yellow band is 25-75% probability band
- The dashed vertical line indicates elapsed time since last M≥7.0 (Loma Prieta 1989)
- Based on this, 25% probability of M≥7.0 in northern CA within ~5 years









31

#### 4/10/15

32

# Virtual Quake

- VQ comparison to other forecasts
- OpenHazards.com
  - Provides free magnitude/time estimates for arbitrary regions
  - Operated by Prof. John Rundle
- Estimate of M≥7 over next 3 years is 20.3%
- VQ prediction of M≥7 in same area is 14.7%









- Estimate for Taipei area (as of this morning)
- M≥5 in 1 year, 91% probability
- M≥7 in 1 year, only 1.7% probability
- Conditional Weibull method of forecasting (counting earthquakes)



Probability of Earthquake Within 50 Miles of Taipei-Keelung Highway & Tai'an Road, Qidu District, Keelung City, Taiwan 206

|     | 1 Month | 1 Year | 3 Years |
|-----|---------|--------|---------|
| M≥5 | 3.31%   | 91.40% | 99.9%   |
| M≥6 | 0.22%   | 8.58%  | 53.81%  |
| M≥7 | <0.05%  | 1.68%  | 13.86%  |
| M≥8 | <0.05%  | 0.16%  | 1.45%   |

Fri Apr 10 2015 08:28:45 GMT+0800 (CST)





- VQ usage involves the following steps:
  - Create 1D model of fault system based on traces
  - Run trace model through mesher to generate 3D model of fault system
  - Define simulation parameters (simulation length, dynamic rupture propagation parameter, etc)
  - Run simulation(s)
    - Read model file
    - Calculate Greens function
    - Output data files from simulation
  - Analyze output files, generate visualization





- Most of these steps have computational steps in common
  - Read and write files with the fault model and event history
  - Vector mathematics
  - Manipulating and querying fault representations
  - Stress, displacement, gravity anomaly calculations (based on Greens functions)
- Rather than implementing the same functionality multiple times, VQ uses QuakeLib
- QuakeLib provides access to shared functionality through a C, Python, or other interface





- Once data is generated from the simulation, tools are needed to analyze and visualize results
- PyVQ is a Python based toolkit built on QuakeLib
- Provides functionality to plot events on maps, magnitudefrequency/cumulative distributions, analyze interevent times, fault interconnectivity
- Right graphic shows a visualization of InSAR interferogram fringes of multiple events from a VQ run







- PyVQ also calculates gravity changes from displacement of a fault patch
- This will be correlated with NASA GRACE (Gravity Recovery and Climate Experiment) mission data to evaluate gravity changes as a means of detecting faults
- Figure below shows the surface gravitational anomalies for a strike slip fault (left), normal fault (center), and thrust fault (right)
- Gravity anomaly calculations based on Okubo<sup>[2]</sup>



[1] Gravity and potential changes due to shear and tensile faults in a half-space., S. Okubo 1992



# **GPGPU** Support



 Working with Optimal Synthesis we implemented GPU (CUDA) based support for VQ calculations



- Focused on two compute intensive sections of code
  - Green's function calculation (N^2 calculations, each requiring 14,000-45,000 flops)
  - Long term stress calculate (N^2 flops between each event, 1e5-1e7 events per simulation)

| Model Name            | Elements (N) | Matrix Size | CPU Times (12-Core) |
|-----------------------|--------------|-------------|---------------------|
| AllCal2_Trunc7453     | 7453         | 423.96 MB   | 371.49s (6m 12s)    |
| AllCal2_NoCreep_13482 | 13482        | 1.35 GB     | 5137.03s (1h 25m)   |
| AllCal_17757          | 17757        | 2.35 GB     | 3432.16s (57m 12s)  |



#### GPGPU Support

- Results on GPU are highly promising
- Green's function calculation is 80x faster than single CPU core,
  7.3x faster than 12 cores
  - Branching rarely affects Green's function in normal fault configurations
- Matrix-vector multiply (stress accumulation phase) is 45x faster than single core, 47x faster than 12 cores (memory bandwidth limited)
- Total simulation runtime is 32-50x faster on GPU





**NVIDIA** 

Titan

39

#### **GPGPU** Support





(graph courtesy Optimal Synthesis)

4/10/15



- Current version is available at – geodynamics.org/cig/software/vq
- Includes
  - Improved mesher
  - Example files, introductory tutorial
  - Manual describing code background, physics equations, and input/output file formats
  - QuakeLib and Python wrappers used for PyVQ and WebVC visualization/analysis
  - 235 unit tests covering all aspects of the code
  - Parallel calculation with OpenMP and MPI



41





- We want arbitrarily small elements so we can properly model small magnitude earthquakes
- 3000m x 3000m elements result in minimum magnitude of around M=5.6
- Memory and speed are significant limitations
  - Interaction matrix size grows as N^2 in elements
  - Elements grow as N^2 in resolution
  - Therefore, memory requirements grow as N^4
    - Example: for CA fault system, 3000m resolution requires ~1GB of memory, 500m resolution requires ~5000GB of memory





42



#### **Future Development**

- Currently limitation to detailed simulations is memory usage
  - Grows as O(N^4) CA model at 250m resolution (2 million elements) would require 30 TB memory
  - Hierarchical matrix implementation reduces this to O(N^2) – (e.g. 32GB for 2 million elements)
  - Also significantly improves runtime
- Dynamic fault geometry
  - Current fault configuration is static what happens when faults change over time?
- Improve analysis/visualization tools (PyVQ, WebVQ)
  - Simplify analysis for users, provide web frontend



Sample Hierarchical Matrix





#### Overview



- Introduction
- The Computational Infrastructure for Geodynamics
- Virtual Quake
- Research Code Development Guidelines





- My background is in computer science
- There are several practices common in computer science that benefit research code development
  - Version control
  - Unit testing
  - Continuous integration
  - Use libraries/modules
- Using these tools will make your research more efficient, accurate, and reproducible





- Version control
  - Code changes over time
  - Very useful to track what was changed when
  - Version control keeps a record of what was changed for what reason at what date
  - Helps ensure reproducibility, keeps a record of who changed what at what time
  - Allows multiple researchers to collaborate on the same project simultaneously
  - I recommend Git and Github (try.github.io)
  - Makes it easy to share your code with others – becoming a requirement for many journals



Git development history for VQ





- Continually add tests to confirm code validity
- Virtual Quake:
  - 235 tests run automatically after each code change
  - Tests are run on multiple platforms to find platform dependent problems
  - Confirm basic mathematical and vector operations function correctly
  - Verify that simulations produce expected results
  - Verify that multiple processors yield same results as single processor
  - Confirm Green's function calculation produces results within expected tolerances
  - Confirm file reading/writing function as expected





- Libraries
  - Much of the functionality you need for your research has already been written
  - Finite element: deal.II, PETSc, Fenix
  - Linear algebra: Trilinos, PETSc, LAPACK
  - Data analysis and visualization: matplotlib, scipy, numpy
  - Earthquake/Seismic: ObsPy, QuakeLib, OpenSHA
- Research is an iterative process
  - Automate as much as possible
  - If you are typing the same thing over and over, or copying/pasting data, you are wasting your time



#### Conclusion



- Virtual Quake is a boundary element code to simulate long term fault stress interactions for statistical study
- Uses Greens functions for stress interaction between faults, static/dynamic failure model for rupture propagation
- Results with California model show good agreement with observed seismicity
- Provides a means to do event recurrence forecasting
- Provides tools for analysis and visualization of data





#### Thank you

#### Any questions?

