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Overview 

• Introduction 
• The Computational Infrastructure for 

Geodynamics 
• Virtual Quake 
• Research Code Development Guidelines 
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My Background 

• University of California, Berkeley 2002 
• Ph.D. Computer Science, Osaka University, 2010 
• Postdocs at UCDavis, INRIA Grenoble Rhone-Alpes 
• My research orientation is scientific computation with a 

computer science focus 
• Past projects include work in radio and optical astronomy, 

symbolic mathematics, evolutionary algorithms, large scale 
computing systems, biophysics simulations, supercomputer 
system analysis, geophysics simulation 

• Until recently, worked at Computational Infrastructure for 
Geodynamics (CIG) at UCDavis 
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CIG 

• Computational Infrastructure for Geodynamics 
• NSF funded research center 
• CIG I – started in 2005 at California Institute of Technology 
• CIG II –  moved to the University of California, Davis in 2010 
• CIG III – scheduled to start in 2015 at UCDavis 
• 72 member institutions and international affiliates around 

the world 
• Goal is to “[advance] earth science by developing and 

disseminating software for geophysics and related fields” 
• CIG provides training for earth scientists, organizes 

workshops, develops research code 
• Homepage is at http://geodynamics.org/  
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CIG 

• Why rewrite geophysics codes that have been already written?  
Don’t! 

• “If I have seen further it is by standing on the shoulders of giants.” – 
Isaac Newton 

• CIG supports researchers and scientists to share and reuse 
geophysics scientific code 

• Covers a wide range of solid earth disciplines including seismology, 
short term tectonics, long term crustal deformation, mantle 
convection, geodynamo 

• I’ll briefly discuss some codes that may be useful to your research 
• All these and more are available at geodynamics.org/cig/software/ 
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SPECFEM 

• Numerical modeling of seismic 
wave propagation using spectral 
elements 

• Multiple variants, including 
SPECFEM1D, SPECFEM2D, 
SPECFEM3D Cartesian, 
SPECFEM3D Globe 

• Specify a source mechanism and 
topography, then determine ground 
acceleration and shaking at different locations 

• Used for seismic tomography inversions 
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SPECFEM 

• Simulate seismic wave 
propagation through 
hypothetical model 

• Compare synthetic 
seismograms with actual 
seismograms 

• Update mantle/crust material 
model accordingly 

• Allows for high resolution imaging of whole earth 
structure 

• Huge computational cost (10^3 or more core-years) 

4/10/15 7 

Initial mantle tomography 
(left) and iteratively refined 

tomography (right) 



SPECFEM 

• Example visualization of SPECFEM3D 
simulation of 1964 Alaska M9.2 earthquake 
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SW4 

• Seismic wave propagation 
modeling with arbitrary 3D 
heterogeneous material 

• User specified source function 
• Free surface condition on top 

boundary (allows arbitrary 
topography) 

• Developed at Lawrence Livermore National 
Laboratory 

• Used for ground motion prediction 
• Available at geodynamics.org/cig/software/sw4/ 
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AxiSEM 

• Spectral element method for 3D (an-
)elastic, anisotropic and acoustic wave 
propagation in spherical domains 

• Uses 2.5D approach for fast computation 
– spherical shell layers are assumed 
homogeneous 

• Uses series of multipoles to calculate 
response to point source 

• Generate synthetic seismograms from 
source functions propagated through 
whole globe at high frequencies 

• Available at 
geodynamics.org/cig/software/axisem/ 
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PyLith 

• Finite element code for dynamic and 
quasistatic simulations of crustal 
deformation, primarily earthquakes 
and volcanoes 

• Primarily used to do highly detailed 
study of stress buildup and rupture 
process of a single fault 
– Strain accumulation associated with 

interseismic deformation 
– Coseismic stress change and fault slip 
– Postseismic relaxation of the crust 

• Available at geodynamics.org/cig/software/pylith/ 

4/10/15 11 



Virtual Quake 

• Virtual Quake (VQ) is a boundary 
element code that performs 
simulations of fault systems based 
on stress interactions between fault 
elements 

• Allows statistical study of fault 
system behavior and interaction 

• Over 100 downloads of the 
software from dozens of countries 

• Freely available at 
geodynamics.org/cig/software/vq 
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Virtual Quake 

• First version written by Prof. John Rundle in 1988 
– Could only model small strike slip fault systems 

• Updated in early to mid-2000s by Yakovlev to 
include major strike-slip faults in California and 
named “Virtual California” 

• In 2010 rewritten by Heien to allow parallel 
simulation, arbitrary fault systems 

• Advanced tools for visualization and analysis 
written in 2011-2013 

• Renamed “Virtual Quake” and publicly released 
in 2014 

4/10/15 14 



Virtual Quake 

• Ensemble-domain vs. time-domain simulations 
• Time-domain: Understand system behavior by 

time stepping through single system 
– Generally finite element, or finite difference 
– Examples: SPECFEM, AxiSEM, PyLith 
– Pros: based on PDE rules, can confirm results 

compared to analytical solutions 
– Cons: very sensitive to initial conditions, very sensitive 

to model configuration, expensive to calculate 
(months or years of computer time) 
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Virtual Quake 

• Ensemble-domain: Understand system behavior in a 
statistical manner by studying multiple systems 
– Examples: Virtual Quake, climate simulations 
– Pros: less sensitive to initial conditions or system 

configuration, can be less expensive to calculate (hours or 
days of computer time) 

– Cons: difficult to exactly compare with mathematical or 
experimental models 

• We don’t know the current stress state of the faults 
– Run an ensemble of simulations to determine which paths 

(series of earthquake events) are most likely 
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Virtual Quake 

• In VQ the earthquake cycle is divided into two parts 
– Long term stress accumulation (slider block model) 
– Rapid release of stress during rupture 

• Long term stress accumulation 
– Displacements of faults in the crust 

generate stress in surrounding areas 
– Displacement is modeled by 

movement of fault patches at a 
specified constant rate (long term 
slip rate) 

– Fault patches do not actually 
move over time, but rather slip 
back to their original position during 
a rupture event 
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Courtesy (Bak, 1996) 



Virtual Quake 

• Release of stress during rupture 
– Fault element failure (rupture) is determined by 

Coulomb failure function (CFF) 
– Faults can experience either static or dynamic failure 
– Static failure: normal stress 

is overcome by shear stress 
and fault fails (CFF > 0) 

– Dynamic failure: change in 
stress during a rupture is high 
enough that element fails 
while CFF < 0 

– Rupture occurs in multiple 
steps, or “sweeps” (shown right) 
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Virtual Quake 

• Simulation flow 
– Stress accumulation in blue 
– Rupture propagation in purple 
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Virtual Quake 

• Fault System Mesher 
– Before running a simulation, fault geometry must be 

specified 
– Define points along fault traces and specify fault 

parameters at each point 
(depth, rake, dip, etc) 

– The mesher creates a set of 
elements corresponding to 
the faults with the specified 
parameters 

– The simulation uses this 
mesh to calculate stress 
interaction and rupture 
mechanics California fault system meshed 

with 3km x 3km elements 
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Virtual Quake 

• Mesher supports: 
– Input from fault traces (CA faults 

included with VC), EQSim format 
– Output to ASCII, HDF5, KML 
– Mixing elements of different 

resolution 
– Simple addition/removal of faults 
– Merging duplicate vertices to 

reduce space, clarify fault element 
connectivity 

– Automatic stress/friction calculation 
appropriate to model 
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HDF5 CA Model File 



Virtual Quake 

Southern CA faults meshed at 3km resolution (left) and 500m resolution (right) 
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Virtual Quake 

• Long term stress accumulation 
– Interaction between fault elements 

is modeled by Okada 
implementation[1] of stress transfer 
Greens function 

– Functions relate point or 
rectangular patch displacement to 
surrounding a) displacement field, 
b) stress field, c) gravity changes 

– Interactions between N elements is 
stored as an NxN matrix 

Strike slip fault stress 
field (top view) 

Strike-slip fault stress 
field (side view) 
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[1] Internal Deformation Due to Shear and Tensile Faults in a Half-Space, Y. Okada 1992 



Virtual Quake 

• Long term stress accumulation 
– Calculate stress interaction between all elements 

and store in a matrix where TAB is the stress 
change on A caused by B moving a unit distance 

– Buildup of stress on element A is determined by 
 

– or in the matrix notation 
 

– This is equivalent to a matrix-vector multiply 
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Virtual Quake 

• Initial fault element failure 
– VQ uses the CFF (Coulomb Failure Function) to 

determine when an element fails 
 

– VQ treats normal stress as constant and shear stress 
as increasing, so eventually a fault will fail due to the 
CFF criteria 

• Can have variable normal stress for thrust faults 
– An element fails when CFF > 0, which means shear 

stress overrides normal stress and friction 
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Virtual Quake 

• Rupture propagation 
– For a failed element, initial slip is determined by the 

relation  
where KL is the self-shear stress of the element 

– In previous versions of VQ (and most other similar 
codes), element slip was prescribed in the model by 
modifying the stress drop (Δσ) 

– This allowed the user to force faults to have arbitrary 
magnitude earthquakes 

– In the current version of VQ, initial slip is determined 
mathematically to ensure faults obey scaling laws 
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Virtual Quake 

• Rupture propagation 
– After elements have been processed, we determine if 

more elements will fail 
– Elements can rupture due to static failure (CFF>0) or 

dynamic failure 
– Dynamic failure occurs if  

and corresponds to how likely the crack tip will 
propagate 

– The value of η determines how much a rupture will 
grow (small η means larger earthquakes) 
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Virtual Quake 

• Rupture propagation 
– We have tried using rate state friction based on the standard 

formulation 
– This is an advanced friction model that allows for fault healing and 

slow stress buildup 
– Nondimensional version on the 

equations is shown to the right 
– For a single block within a 

range of parameters this works 
as a good model 

– However, because of the ln(V) and 
ln(Θ) terms in the force, V and Θ must not become negative 

– With coupled block systems you cannot guarantee these will not be 
negative because of the interaction with other blocks 

– Most “rate-state” simulators use a simplified form of these equations 
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Virtual Quake 

• The parameter η must be tuned to 
best match actual magnitude-
frequency distributions 

• In our experience, η=0.4 to 0.8 is 
generally best 

• Plots on the right show how well 
frequency magnitude corresponds 
to common models 
– Top is UCERF2 observed seismicity 
– Bottom is Wells and Coppersmith 

relation 
• Within the η=0.5 to 0.7 range we 

get good fit to observed seismicity 
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Virtual Quake 

• By running a long simulation 
and analyzing the event catalog, 
we can make forecasts about 
interval times 

• Figure on the right shows the 
conditional cumulative 
probability of a M≥7.0 earthquake 
on forecasted faults (Northern CA) 

• Based on event catalog from VQ simulation covering 
thousands of years (multiple event cycles) 

• Distribution is evaluated at t=t0+Δt with the last 
earthquake occurring t0 years ago 
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Virtual Quake 

• Forecast waiting times 
for next M≥7.0 
earthquake on northern 
CA faults 

• Dark line is median waiting 
time (50% probability) 

• Yellow band is 25-75% 
probability band 

• The dashed vertical line indicates elapsed time since 
last M≥7.0 (Loma Prieta 1989) 

• Based on this, 25% probability of M≥7.0 in northern CA 
within ~5 years 
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Virtual Quake 

• VQ comparison to other 
forecasts 

• OpenHazards.com 
– Provides free 

magnitude/time estimates 
for arbitrary regions 

– Operated by Prof. John 
Rundle 

• Estimate of M≥7 over next 
3 years is 20.3% 

• VQ prediction of M≥7 in 
same area is 14.7% 
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Virtual Quake 

• Estimate for Taipei area 
(as of this morning) 

• M≥5 in 1 year, 91% 
probability 

• M≥7 in 1 year, only 1.7% 
probability 

• Conditional Weibull 
method of forecasting 
(counting earthquakes) 

4/10/15 33 



QuakeLib/PyVQ 

• VQ usage involves the following steps: 
– Create 1D model of fault system based on traces 
– Run trace model through mesher to generate 3D 

model of fault system 
– Define simulation parameters (simulation length, 

dynamic rupture propagation parameter, etc) 
– Run simulation(s) 

• Read model file 
• Calculate Greens function 
• Output data files from simulation 

– Analyze output files, generate visualization 

4/10/15 34 



QuakeLib/PyVQ 

• Most of these steps have computational steps in 
common 
– Read and write files with the fault model and event 

history 
– Vector mathematics 
– Manipulating and querying fault representations 
– Stress, displacement, gravity anomaly calculations 

(based on Greens functions) 
• Rather than implementing the same functionality 

multiple times, VQ uses QuakeLib 
• QuakeLib provides access to shared functionality 

through a C, Python, or other interface 
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QuakeLib/PyVQ 

• Once data is generated from the 
simulation, tools are needed to 
analyze and visualize results 

• PyVQ is a Python based toolkit 
built on QuakeLib 

• Provides functionality to plot 
events on maps, magnitude-
frequency/cumulative 
distributions, analyze interevent 
times, fault interconnectivity 

• Right graphic shows a 
visualization of InSAR 
interferogram fringes of multiple 
events from a VQ run 
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QuakeLib/PyVQ 

• PyVQ also calculates gravity changes from displacement of a fault 
patch 

• This will be correlated with NASA GRACE (Gravity Recovery and 
Climate Experiment) mission data to evaluate gravity changes as a 
means of detecting faults 

• Figure below shows the surface gravitational anomalies for a strike 
slip fault (left), normal fault (center), and thrust fault (right) 

• Gravity anomaly calculations based on Okubo[2] 
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[1] Gravity and potential changes due to shear and tensile faults in a half-space., S. Okubo 1992 



GPGPU Support 

• Working with Optimal 
Synthesis we implemented 
GPU (CUDA) based support 
for VQ calculations 

• Focused on two compute intensive sections of code 
– Green’s function calculation (N^2 calculations, each 

requiring 14,000-45,000 flops) 
– Long term stress calculate (N^2 flops between each event, 

1e5-1e7 events per simulation) 
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Model Name Elements (N)  Matrix Size CPU Times (12-Core) 

AllCal2_Trunc7453 7453 423.96 MB 371.49s  (6m 12s) 

AllCal2_NoCreep_13482 13482 1.35 GB 5137.03s (1h 25m) 

AllCal_17757 17757 2.35 GB 3432.16s (57m 12s) 



GPGPU Support 

• Results on GPU are highly promising 
• Green’s function calculation is 80x 

faster than single CPU core, 
7.3x faster than 12 cores 
– Branching rarely affects Green’s 

function in normal fault configurations 
• Matrix-vector multiply (stress accumulation 

phase) is 45x faster than single core, 47x faster 
than 12 cores (memory bandwidth limited) 

• Total simulation runtime is 32-50x faster on GPU 
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NVIDIA 
Titan 



GPGPU Support 

(graph courtesy Optimal Synthesis) 
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Virtual Quake 

• Current version is available at 
– geodynamics.org/cig/software/vq 

• Includes 
– Improved mesher 
– Example files, introductory tutorial 
– Manual describing code background, 

physics equations, and input/output 
file formats 

– QuakeLib and Python wrappers used for PyVQ and 
WebVC visualization/analysis 

– 235 unit tests covering all aspects of the code 
– Parallel calculation with OpenMP and MPI 
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Virtual Quake 

• We want arbitrarily small 
elements so we can properly 
model small magnitude 
earthquakes 

• 3000m x 3000m elements 
result in minimum magnitude 
of around M=5.6 

• Memory and speed are significant limitations 
– Interaction matrix size grows as N^2 in elements 
– Elements grow as N^2 in resolution 
– Therefore, memory requirements grow as N^4 

• Example: for CA fault system, 3000m resolution requires ~1GB of 
memory, 500m resolution requires ~5000GB of memory 
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Future Development 

• Currently limitation to detailed simulations is memory 
usage 
– Grows as O(N^4) – CA model at 250m 

resolution (2 million elements) would 
require 30 TB memory 

– Hierarchical matrix implementation 
reduces this to O(N^2) – (e.g. 32GB for 
2 million elements) 

– Also significantly improves runtime 
• Dynamic fault geometry 

– Current fault configuration is static – what happens when faults 
change over time? 

• Improve analysis/visualization tools (PyVQ, WebVQ) 
– Simplify analysis for users, provide web frontend 
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Sample Hierarchical Matrix 
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Research Code Guidelines 

• My background is in computer science 
• There are several practices common in 

computer science that benefit research code 
development 
– Version control 
– Unit testing 
– Continuous integration 
– Use libraries/modules 

• Using these tools will make your research 
more efficient, accurate, and reproducible 
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Research Code Guidelines 

• Version control 
– Code changes over time 
– Very useful to track what was changed when 
– Version control keeps a record of what was changed for what 

reason at what date 
– Helps ensure reproducibility, keeps a record of who changed 

what at what time 
– Allows multiple researchers to collaborate on the same project 

simultaneously 
– I recommend Git and 

Github (try.github.io) 
– Makes it easy to share 

your code with others – 
becoming a requirement 
for many journals 
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Git development history for VQ 



Research Code Guidelines 

• Continually add tests to confirm code validity 
• Virtual Quake: 

– 235 tests run automatically after each code change 
– Tests are run on multiple platforms to find platform 

dependent problems 
– Confirm basic mathematical and vector operations 

function correctly 
– Verify that simulations produce expected results 
– Verify that multiple processors yield same results as single 

processor 
– Confirm Green’s function calculation produces results 

within expected tolerances 
– Confirm file reading/writing function as expected 
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Research Code Guidelines 

• Libraries 
– Much of the functionality you need for your research 

has already been written 
– Finite element: deal.II, PETSc, Fenix 
– Linear algebra: Trilinos, PETSc, LAPACK 
– Data analysis and visualization: matplotlib, scipy, 

numpy 
– Earthquake/Seismic: ObsPy, QuakeLib, OpenSHA 

• Research is an iterative process 
– Automate as much as possible 
– If you are typing the same thing over and over, or 

copying/pasting data, you are wasting your time 

4/10/15 48 



Conclusion 

• Virtual Quake is a boundary element code to simulate 
long term fault stress interactions for statistical study 

• Uses Greens functions for stress interaction between 
faults, static/dynamic failure model for rupture 
propagation 

• Results with California model show good agreement 
with observed seismicity 

• Provides a means to do event recurrence forecasting 
• Provides tools for analysis and visualization of data 
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Thank you 
 

Any questions? 
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