Tectonic evolution of an active tectonostratigraphic boundary in accretionary wedge: An example from the Tulungwan-Chaochou Fault system, southern Taiwan

> Chung Huang Dept. of Geosciences, National Taiwan University

Motivation

- What is an accretionary wedge?
- How the accretionary wedge deforms?
- Are there any active structures in the inner part of an accretionary wedge?

Taiwan is an active accretionary wedge: 1999 Chi-Chi earthquake

How the Taiwan accretionary wedge formed?

Chung-Pai Chang

What is an accretionary wedge?

Suppe, 2007

How to maintain the critical taper of an accretionary wedge?

- Development of thrust faults in the internal part of the mountain belt.
 - The thrusts in the internal part of the mountain belt are often referred to "out-ofsequence thrusts" (OOST).

Modified from Suppe, 2007

Active OOST in Central Taiwan

Chyi-Tyi Lee, 2015

What is an OOST?

- OOST branches from the detachment, and can penetrate trough surface, which means large (~10 km) offset between hanging wall and footwall.
- OOST is the boundary and separates two rock types in a wedge (Wang and Hu, 2006):
 - A stronger "inner wedge" on the OOST's hinterland
 - A weaker "outer wedge" on the OOST's foreland side
- Active OOST can make the whole fault plane slip and generate large magnitude earthquake (e.g. Nankai trough area).

An example of a seismogenic OOST: Nankai Trough megasplay

Another possible OOST in Taiwan

- The boundary between Western Foothills and the southern Central Range is a major structural boundary
- Previous recognized as the Chaochou-Tulungwan Fault system
- Separates

unmetamorphosed sedimentary rocks in the footwall from slate in the hanging wall

 Maximum vertical offset could up to 11 km (based on maximum paleotemperature difference)

Research questions

- Are there any structures related to the Chaochou-Tulungwan Fault in southern Taiwan?
- What is the deformation history of the Chaochou-Tulungwan Fault?
- Is the Chaochou-Tulungwan Fault in southern Taiwan active?

The slate antiform

New discovery: the Laonung antiform

Paleostress inversion of the Tulungwan Fault

Reconstruction of shortening history

Early Stage Faulting

Quartz Slickenfiber

Crespi et al., 1996

identified late stage faults

- Late stage faults
- n = 47, 113-293°

Stress Inversion				
Phase	Max Orient.	Early / Late		
1 (A)	285 / 02	17 / 22		
2 (B)	323 / 13	12 / 6		
3 (C)	083 / 23	5 / 5		
4 (D)	187 / 02	1/7		

- Three shortening stages
 - Stage 1
 NW-SE
 - Parallel to the plate convergence direction.
 - Stage 2 WNW-ESE to WSW-ENE
 - Perpendicular to the fold axis of the slate antiform.
 - Stage 3 NNE-SSE to N-S
 - Parallel to the lateral extrusion and the Jia-Shian earthquake.

Stress Inversion				
Max Orient.	Early / Late			
285 / 02	17 / 22			
323 / 13	12 / 6			
083 / 23	5 / 5			
187 / 02	1/7			
	Stress Inversion Max Orient. 285 / 02 323 / 13 083 / 23 187 / 02			

• Three shortening stages

• Stage 1 NW-SE

Stress Inversion				
Phase	Max Orient.	Early / Late		
1 (A)	285 / 02	17 / 22		
2 (B)	323 / 13	12 / 6		
3 (C)	083 / 23	5 / 5		
4 (D)	187 / 02	1/7		

- Three shortening stages
 - Stage 1 NW-SE
 - Parallel to the plate convergence direction.

 Stage 2 WNW-ESE to WSW-ENE

- Perpendicular to the fold axis of the slate antiform.
- Stage 3 NNE-SSE to N-S
 - Parallel to the lateral extrusion and the Jia-Shian earthquake.

Stress Inversion				
Phase	Max Orient.	Early / Late		
1 (A)	285 / 02	17 / 22		
2 (B)	323 / 13	12 / 6		
3 (C)	083 / 23	5 / 5		
4 (D)	187 / 02	1/7		

Stress Inversion				
Phase	Max Orient.	Early / Late		
1 (A)	285 / 02	17 / 22		
2 (B)	323 / 13	12 / 6		
3 (C)	083 / 23	5 / 5		
4 (D)	187 / 02	1/7		

- Three shortening stages
 - Stage 1 NW-SE
 - Parallel to the plate convergence direction.
 - Stage 2 WNW-ESE to WSW-ENE
 - Perpendicular to the fold axis of the slate antiform.

 Stage 3 NNE-SSE to N-S

• Parallel to the lateral extrusion and the Jia-Shian earthquake.

圖說:★表震央位置,阿拉伯數字表示該測站震度

NNE-SSE to N-S, Late stage faults Parallel to the lateral extrusion and the Jiasian earthquake

Uplift rates and deformation pattern

Long-term deformation

rate

- Apatite Fission Track reset temperature ≈ 100°C
- Geothermal gradient
 ≈ 30 °C/km, 100°C ≈ 3 km
- AFT reset age: 2.0 3.4
 Ma (Fuller et al., 2006)
- Uplift rate
 ≈ 0.7 1.1 km/Ma
 = 0.7 1.1 mm/yr

Evidence for active deformation

- Leveling and GPS: 2000 2008 (Ching et al., 2011)
- GPS contour: 1995 2005 (Ching et al., 2007)

Two geomorphic indices are used in the study

- River steepness index (k_{sn})
 - k_{sn} is normalized steepness: values are normalized to watershed area and river concavities of nearby rivers.
 - k_{sn} values generally relate to uplift rate and rock erodibility, with higher k_{sn} values reflecting stronger rocks or higher uplift rates.
- Drainage basin asymmetry factor (AF)
 - Drainage basin asymmetry records tilting of a drainage basin or bedrock anisotropy within a basin.

k_{sn} of southern Central Range

- High values correlate with Eocene and pre-Tertiary metamorphic rocks in the north and, lower values in the lower grade Miocene slate in the south
- Higher values also correlate with higher uplift rates in the north

*k*_{sn} cross the Laonung antiform

- k_{sn} data suggest that the river reaches in the central part of the Bangfu River catchment are steeper (i.e. have higher k_{sn} values) than upstream or downstream
- These steeper reaches may reflect activity of the Laonung antiform

AF cross the Laonung antiform

- AF values in basins along the axis of the Laonung antiform significantly lower than AF values in basins away from the axis
- The low values, when viewed downstream, suggest tilting to

$$A_{right} = A_{left}$$

$$A_{right} / A_{total} = 0.5$$

$$AF = 50$$

$$AF = 50$$

$$A_{right} < A_{left}, AF < 50$$

$$A_{right} = 0.5$$

Tectonic evolution model

Tomographic profile beneath the antiform

Data from Hao Kuo-Chen

Proposed multiple stage deformation model

Early stage

direction.

Proposed multiple stage deformation model

Late stage

Perpendicular to the fold axis of the Laonung antiform.

Conclusion

- The geometry of deformed cleavage shows a regional-scale antiform
- Paleo-stress analyses of brittle faults in the antiform area indicate a shortening direction that is perpendicular to the fold axis.
- River incision rates and recent leveling data along the Laonung River, consistent with an active structure.
- Leveling data along the Laonung River show relatively high rates of uplift (up to 12 mm/yr), suggesting that the high rates of uplift are more important than rock erodibility in determining k_{sn} value in this area.
- The deformed slates identified an overturned-forelimb of the regional-scale antiform in the Laonung River Valley.
- We propose that the antiform is forming at the tip of a lowangle thrust which splays from a regional scale detachment.

Acknowledgement

- University of Connecticut: Drs. Tim Byrne, Will Ouimet, and Jean Crespi
- Trinity College: Dr. Jon Gourley
- Indiana University of Pennsylvania: Dr. Jon Lewis
- Academia Sinica (IES): Drs. Yu-Chang Chan, Jian-Cheng Lee, and Chih-Tung Chen
- Central Geological Survey of Taiwan: Dr. Hao-Tsu Chu and Mr. Yu- Chung Hsieh
- National Central University: Drs. Hao Kuo-Chen, Chung-Pai Chang, and Andrew Lin
- National Cheng Kung University: Drs. Ruei-Juin Rau and Kuo-En Ching
- National Chung Cheng University: Drs. Yuan-Hsi Lee and Meng-Long Hsieh
- National Taiwan University: Drs. Jyr-Ching Hu, Chia-Yu Lu, Jonny Wu, John Suppe, Bruce Shyu, Hsin-Hua Huang, and Mr.
 - Wei-Hao Hsu
- Taiwan Power Company: Ms. Hsuan-Wei Huang
- University of California, Berkeley: Dr. Mong-Han Huang Full Article

From accretion to collision: Motion and evolution of the Chaochou Fault, southern Taiwan

David V. Wiltschko,¹ Lauren Hassler,¹ Jih-Hao Hung,² and Ho-Sung Liao² Received 21 October 2008; revised 10 September 2009; accepted 24 September 2009; published 15 April 2010.

Thank you!

4892 DS