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Abstract

Ž . Ž .Simulation of digital ground penetrating radar GPR wave propagation in two-dimensional 2-D media is developed,
Ž .tested, implemented, and applied using a time-domain staggered-grid finite-difference FD numerical method. Three types

of numerical algorithms for constructing synthetic common-shot, constant-offset radar profiles based on an actual
transmitter-to-receiver configuration and based on the exploding reflector concept are demonstrated to mimic different types
of radar survey geometries. Frequency-dependent attenuation is also incorporated to account for amplitude decay and time
shift in the recorded responses. The algorithms are based on an explicit FD solution to Maxwell’s curl equations. In addition,
the first-order TE mode responses of wave propagation phenomena are considered due to the operating frequency of current
GPR instruments. The staggered-grid technique is used to sample the fields and approximate the spatial derivatives with
fourth-order FDs. The temporal derivatives are approximated by an explicit second-order difference time-marching scheme.

Ž . Ž .By combining paraxial approximation of the one-way wave equation A and the damping mechanisms sponge filter , we2
Ž .propose a new composite absorbing boundary conditions ABC algorithm that effectively absorb both incoming and

outgoing waves. To overcome the angle- and frequency-dependent characteristic of the absorbing behaviors, each ABC has
two types of absorption mechanism. The first ABC uses a modified Clayton and Enquist’s A condition. Moreover, a fixed2

and a floating A ABC that operates at one grid point is proposed. The second ABC uses a damping mechanism. By2

superimposing artificial damping and by alternating the physical attenuation properties and impedance contrast of the media
within the absorbing region, those waves impinging on the boundary can be effectively attenuated and can prevent waves
from reflecting back into the grid. The frequency-dependent characteristic of the damping mechanism can be used to adjust
the width of the absorbing zone around the computational domain. By applying any combination of absorbing mechanism,
non-physical reflections from the computation domain boundary can be effectively minimized. The algorithm enables us to
use very thin absorbing boundaries. The model can be parameterized through velocity, relative electrical permittivity
Ž .dielectric constants , electrical conductivity, magnetic permeability, loss tangent, Q values, and attenuation. According to
this scheme, widely varying electrical properties of near-surface earth materials can be modeled. The capability of simulating
common-source, constant-offset and zero-offset gathers is also demonstrated through various synthetic examples. The
synthetic cases for typical GPR applications include buried objects such as pipes of different materials, AVO analysis for
ground water exploration, archaeological site investigation, and stratigraphy studies. The algorithms are also applied to
iterative modeling of GPR data acquired over a gymnasium construction site on the NCCU campus. q 1998 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Ž .Ground Penetrating Radar GPR is a geo-
physical technique in which an electromagnetic
pulse is transmitted into the earth and reflec-
tions are received using one or more antennas
on the surface. The radar pulse is transmitted,
reflected and diffracted by the geological struc-
tures and by any anomalous features that may
be present in the earth. The reflected and
diffracted EM waves are received by a receiver
antenna on the earth’s surface. The resolution of
GPR profiles can be enhanced by stacking over
many traces or using post-processing software
to effectively suppress unwanted noise. In re-
cent years, GPR data were collected in analog
form because of the difficulty in reliably digitiz-

Ž .ing the data at extremely small picosecond
intervals. Such a difficulty severely limited the
processing and application of GPR data. Until
recently, with the advance of digital data acqui-

Žsition systems Wright et al., 1989; Davis and
.Annan, 1989 , GPR technology has become

possible to resolve practical problems. The
kinematic similarities among electromagnetic
Ž .radar , seismic waves and sonar have been

Ž .previously documented by Brekhovskikh 1960 ,
Ž . Ž .Szaraniec 1976, 1979 , Ursin 1983 and oth-

ers. Thus, under certain assumptions, many ap-
proaches for modeling seismic waves may also
be applied to radar wave simulation. To more
thoroughly understand radar wave propagation
phenomena in complex two- and three-dimen-
sional near-surface subsurface structures, nu-
merical modeling becomes an essential tool.

Numerical modeling for electromagnetic
methods has been extensively investigated. Var-
ious numerical methods include boundary inte-

Ž .gral equations Annan, 1973; Raiche, 1974 ;
frequency domain volume integral equations
ŽHohmann, 1975; Weidelt, 1975; Wannamaker

. Žet al., 1984 ; finite-elements Coggon, 1971;
Silvester and Haslam, 1972; Kuo and Cho, 1980;

.Pridmore et al., 1981 and finite-differences
ŽGoldman and Stoyer, 1983; Oristaglio and

.Hohmann, 1984; Adhidjaja et al., 1985 . Among

all the available methods, relatively few papers
have been published concerning the modeling of
GPR responses for computing synthetic radar-

Ž .grams. Until recently, Goldman 1994 and Cai
Ž .and McMechan 1995 demonstrated ray-based

Ž .modeling algorithms of bistatic constant-offset
Ž .GPR profiles. Zeng et al. 1995 presented a

similar scheme for the simulation of monostatic
Ž .zero-offset radar time section. Comparison of
the ray- and wave-equation based Fourier
method for the simulation of field data was also

Ž .presented by Zeng et al. 1995 . The primary
limitation of ray-based modeling is that diffrac-
tions from sharp corners or truncation features
Ž .such as faults are not included. Fourier meth-

Ž .ods Stolt, 1978; Claerbout, 1985 provide a
wave equation approach for modeling the
diffraction response. However, the major limita-
tions are that the propagation velocity is as-
sumed to be constant and there is no attenua-
tion. Only a flat free surface, and only the
band-limited impulse responses of the model are
produced. The direct air and ground waves are
not modeled by algorithms published by Cai

Ž . Ž .and McMechan 1995 or by Zeng et al. 1995 .
This paper presents a wave-equation based

finite-difference solution to the damped scalar
wave equation for computing synthetic radar-
grams to compensate for the limitations of ray-
and Fourier algorithms. Finite-difference model-
ing is chosen because it is a direct numerical
approximation of the wave equation. Finite-dif-
ference simulation functions well with laterally
heterogeneous media, it is equally feasible for
both seismic modeling and inverse propagation
computations and the computational time for a
given grid size is independent of model com-
plexity. Also, full wave fields are propagated
without the necessity of prior specification of
each wave type to be included. Numerical prop-

Žerties such as grid dispersion Alford et al.,
. Ž .1974 , edge effects Clayton and Engquist, 1977

Ž .and stability problems Mitchell, 1969 , which
are associated with different numerical methods,
must be first considered. The disadvantage of
this method is that it requires a large amount of
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computer memory. However, satisfactory output
can be obtained with finite-differences if suffi-
cient care is given to those requirements that
may appear during computing.

Ž .Oristaglio and Hohmann 1984 used an ex-
plicit finite-difference solution to simulate tran-

Ž . Ž .sient time-domain electromagnetic TE re-
sponses. Since they neglect displacement cur-
rent, the fields are diffusive in behavior. How-

Ž .ever, for GPR frequencies )5–1200 MHz ,
Ž .the displacement polarization properties domi-

nate the conductive properties for many geolog-
Ž .ical materials Davis and Annan, 1989 with

low conductivity. Under such a circumstance,
Žwave propagation dominates diffusion Stratton,

.1941 . Lab measurements also support such
Ž .conclusion Topp et al., 1980 . Therefore,

Maxwell’s equations can be reduced to the
damped scalar wave equation and to simulate

Žthe propagating effects of radar waves cf. eq. 1,
.Oristaglio and Hohmann, 1984 .

Direct time-domain modeling in the approach
presented herein differs from those of Lively-

Ž .brooks and Fullager 1994 , Roberts and Daniels
Ž . Ž .1994 , and Wang and Tripp 1996 who worked
directly with the coupled first-order equations
by the second-order, finite-difference scheme.
Their work follows the finite-difference ap-

Ž .proach of Yee 1966 . Our work is based on a
second-order equation of the de-coupled electric
field or magnetic field, derived from Maxwell’s

Ž .equations. Pridmore et al. 1981 proposed a
similar formulation based on finite-element ap-
proximation. The following sections present a
detailed derivation of the damped scalar wave
formulations.

This work demonstrates the capability of
simulating GPR data that primarily contains
electric field responses. The secondary effects,
such as induced magnetic fields, are not explic-
itly considered. A further objective is to investi-
gate the effects of attenuation on synthetic
radargrams. As generally known, the attenuation
remains essentially constant at different conduc-
tivities, but increases rapidly at frequencies ex-
ceeding 100 MHz because of water content. To

alleviate the computational boundary effects,
composite absorbing boundary conditions are
carefully designed and rigorously checked for
the numerical behavior of 2-D wave propaga-
tion problems. Both simple and complicated
numerical models for various applications
demonstrate the necessity of incorporating at-
tenuation effects into the numerical simulation
of radar recorded in the field. Field data com-
parisons are also presented to verify the feasibil-
ity of our GPR data numeric simulators.

Our work is divided into two parts, each
involving a series of computations. The first
part focuses on the numerical aspects of a stag-
gered-grid finite-difference computation and on
implementing composite absorbing boundary
conditions. The numerical characteristics of var-
ious non-reflecting boundary conditions are sys-
tematically analyzed and compared. Several in-
teresting observations concerning the conse-
quences of selecting different absorbing mecha-
nisms are also discussed. The second part of our
work demonstrates the feasibility of the radar
modeling scheme through synthetic examples
and field data applications. Finally, synthetic
common-shot, constant-offset, and zero-offset
radar profiles are demonstrated to mimic differ-
ent types of radar survey modes including re-
flection profiling, wide-angle reflection and re-

Ž .fraction WARR , and transillumination modes.

2. Methodology

The following sections present the mathemat-
ical foundation for numerical solution of partial
differential equations. Developing a numerical
implementation of the time-domain solution with
staggered-grid finite-difference approximation is
also proposed for simulating electromagnetic
wave propagation in 2-D media.

2.1. Theory

Ž .Electromagnetic EM wave field propaga-
tion phenomena within linear, isotropic near-
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surface geological materials are governed by
Maxwell’s curl equations and the constitutive

Ž .equations Nabighian, 1991 :

E D r ,tŽ .
==H r ,t s J r ,t qŽ . Ž .

E t

E E r ,tŽ .
sJ r ,t q´ r qs r E r ,t ,Ž . Ž . Ž . Ž .s E t

1aŽ .

E B r ,t E H r ,tŽ . Ž .
==E r ,t sy sm r .Ž . Ž .

E t E t
1bŽ .

where H denotes magnetic field intensity
Ž .Arm , J represents total electric current den-

Ž 2. Ž .sity Arm , E is electric field intensity Vrm ,
Ž 2B denotes the magnetic induction T or Wbrm ;

.BsmH , and D represents the electric dipole
Ž 2 .moment Crm ; Ds´ E . J is the sum of the

Ž .conduction current density Jss E and source
Ž .electric current density J . The vector quanti-s

ties in the above equations are time and space
dependent. In addition, s , ´ , and m denote the

Ž .complex electric conductivity mSrm , the elec-
Ž .tric permittivity Frm and magnetic permeabil-

Ž .ity Hrm of the medium, respectively. We
assume that s , ´ , and m are all time, tempera-
ture, and pressure invariant, but may vary spa-
tially.

The EM wave field can be taken as the
superposition of orthogonal polarized compo-

Ž .nents: transverse electric TE and transverse
Ž .magnetic TM modes. Taking the vector prod-

uct, ====E, the curl of the vector E field in
Ž . Ž . Ž .Eq. 1b , and substituting Eq. 1a into Eq. 1b ,

a vector wave equation can be obtained for the
secondary transverse electric fields, i.e.:

= =PE r ,t y= 2E r ,tŽ . Ž .Ž .
E E r ,t E E r ,tŽ . Ž .

sym r ´ r qs rŽ . Ž . Ž .2E t E t

E J r ,tŽ .s
q , 2Ž .

E t

assuming that there is a constant amount of free
charge and that the conductivity in the medium
is not a function of the rate of change of the
electric field in space. Recognizing the fact that

Ž .=PEs0 for homogeneous regions, Eq. 2 be-
comes a decoupled wave equation for the elec-
tric field in the time domain. In 2-D modeling,
the dipole antennas are normally oriented so
that the electric field is polarized parallel to the
target strike direction. For a negligible magnetic
loss, the imaginary component of the complex
relative dielectric permittivity is zero and the
magnetic permeability is assumed to be that of

Ž .free space msm . In most cases, the relative0

susceptibility, mrm , can be taken to remain0

constant except where metallic objects or miner-
Žals are present in abundance Telford et al.,

.1976 .
For a 2-D medium, a line source on the

surface of the earth and the electric field re-
sponse is described by a decoupled TE field.
The equation then becomes:

E 2E E 2E E 2E E E E Js
q sm´ qms qm .2 2 2E x E z E t E t E t

3Ž .

The first term on the right-hand side of the
Ž .wave Eq. 3 represents the displacement of

charge caused by the field. The second term, the
damping term, describes the conduction of
charge caused by the applied electrical field.
The third term can be treated as a source excita-
tion term that is the applied electric field. For a
lossy dielectric medium at high frequency, the
attenuation factor a , that is, the decibel loss per
meter, and the phase constant b are frequency
dependent and can be related to the quality

Ž . Ž .factor Q by e.g., von Hippel, 1954 :

1r2
v k ke m 2'as 1q tan d y1 4aŽ .Ž .
c 2o

1r2
v k ke m 2'bs 1q tan d q1 4bŽ .Ž .
c 2o
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Ž .y1 Ž .y1where Qs tan d s srv´ , k and ke m

denote the real parts of the relative permittivity
Ž . Ž .s´r´ and relative permeability smrmo o

of the material. In a vacuum, the wavelength
denotes l and the wave travels with the veloc-o

ity of light, c s0.3 mrns with the angularo

frequency v. The propagation of the E field
with displacement is dispersive with phase ve-
locity nsvrb. The term ay1 is generally

Žexpressed as the attenuation distance or skin
.depth over which the wave field strength de-

y1Ž .cays to e s0.368 of its initial amplitude
value.

For material with low conductivity and at
sufficiently high frequency, displacement cur-
rent dominates over the conduction current and
EM waves propagate. The radar signal propa-

Ž .gating in low-loss tan d<1 common soil and
rock materials are related to the real part of the
´ . The frequency dependence of the dielectric
constant and conductivity are small, and for
practical purposes, these parameters can be
treated as constants. The wave velocity cs
Ž .y1r2m´ , and the coefficient of the damping

Ž . Ž .term in Eqs. 4a and 4b can be rewritten as
Ž . 2mss 2p f tand rc , where f denotes the fre-

quency. The loss tangent tan d is defined as the
ratio of the imaginary and real part of the
complex dielectric permittivity or alternatively
the ratio of conduction current density to dis-
placement current density. Our current approach
only considers the first-order effects of TE wave

Ž .field responses in the ground. The wave Eq. 3
Ž .becomes the electric field E lossy wave equa-e

tion:

E 2E E 2E 1 E 2E 2p f tand E Ee e e e
q s q2 2 2 2 2E x E z c E t c E t

1 E Js
q . 5Ž .2´ c E t

Because GPR systems normally operate in
the frequency range between 25 to 1200 MHz,
the ground may behave as a dielectric medium

in which the velocity remains constant and the
Žconductivity is less than 100 mSrm Davis and

.Annan, 1989; Bogorodsky et al., 1985 . Under
such conditions, the associated attenuation may
be considered separately from the propagation
velocity and radar waves behave like seismic

Ž .acoustic waves. Notice that Eq. 5 is the damped
wave equation similar to the equation proposed

Ž .by Sochachi et al. 1987 to eliminate any un-
wanted reflections from artificial numerical
boundaries.

Numerical solutions of TE wave field re-
sponses from 2-D structures are achieved by
approximating the differential equation through
the finite-difference method. We also assume
that the numerical model used should be invari-

Žant along strike i.e., perpendicular to the survey
.line .

3. Numerical implementation

Ž .Eq. 5 is used to derive a finite-difference
equation based on numerical operators to ap-
proximate the partial derivatives. The model is
discretized into a uniform grid with a grid spac-
ing of Dh. Each grid point is assigned a veloc-

Fig. 1. A spatially staggered-grid system to model trans-
verse electric waves in two-dimensional Cartesian coordi-
nates. The E field is defined at each sampling location
whereas electric gradients are evaluated half way between
sampled positions.
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Ž .ity e.g., relative dielectric permittivity ´ and
Žan attenuation coefficient or equivalently, the

.loss tangent, Q, or electric conductivity . The
spatial derivatives are approximated by a
fourth-order difference scheme. The temporal
derivatives are approximated by second-order
central differences. A spatially staggered-grid
technique is also adopted to specify material
properties and to sample the E fields and their

Ž . Ž .derivatives on the grid Fig. 1 . Dablain 1986
Ž .and Levander 1988 demonstrated that stag-

gered-grid high-order schemes are better than
low-order schemes for modeling seismic waves.
Such a numerical scheme simulates dispersion
properties better than the conventional differ-
ence scheme such as a second-order scheme in

Ž .space and time Robertsson et al., 1994 .
Explicit fourth-order finite-difference formu-

Ž .lation of a damped scalar wave Eq. 5 can be
written as:

1 y1
E i , j,,tq1 s C E 1q2, j,tŽ . Ž .Že o e½1qA 12

qE iy2, j,t qE i , jq2,tŽ . Ž .e e

4
qE i , jy2,t q E iq1, j,tŽ . Ž Ž ..e e3

qE iy1, j,t qE i , jq1,tŽ . Ž .e e

qE i , jy1,t q 2 E i , j,tŽ . Ž .e e

20
yE i , j,ty1 q Ay E i , j,t ,Ž . Ž . Ž .e e 53

6Ž .

where Dh denotes the grid spacing, D t repre-
sents the time increment, As2pD t f tan d ,

Ž 2 2. Ž 2.and C s c D t r Dh . Indices t, i, and jo

correspond to time and space coordinates along
x- and z- directions, respectively. The leap-frog

Ž . Ž .scheme Kreiss and Oliger, 1972 for Eq. 5 is
used to solve for the updated wave field from
wave fields at previous two time steps.

Ž .Alford et al. 1974 also indicated that the
stability criteria for fourth-order accurate spatial

derivatives and second-order accurate temporal
derivatives scheme is:

3 Dh
D tF , 7Ž .(

8 Vmax

where V represents the maximum velocity ofmax

the waves in the media. The maximum time
increments for time-marching the finite-dif-
ference equation must not exceed D t. Any value
of D t that satisfies the lossless stability condi-
tion will also be stable for the lossy case. Our
numerical experiments also confirm such a con-
clusion. To avoid numerical grid anisotropy for
a given spatial sampling, the grid increment
should be:

Vmin
DhF . 8Ž .

5 fmax

For a particular model, the grid spacing should
be chosen such that approximately five or more
grid points per wavelength are necessary at the

Ždominant frequency typically 1.5 times the ef-
.fective center frequency . From our experience,

the grid spacing should not exceed 1r10 of the
shortest wavelength anticipated for a particular
model in order to achieve good accuracy and
avoid grid dispersion.

Initial conditions at the first two time steps
are defined through the electric field pattern at
ts0 and tsD t. Assume that the source excita-
tion current waveform is a Ricker pulse wavelet

e 2yu tJ t s e , 9Ž . Ž .(s 2u

where u denotes a constant that determines the
Ž .peak-to-peak time interval of J t . It is suffi-s

cient to choose the dominant frequency at f
' (s 2u . The factor er 2u is used to normal-Ž .

Ž .ize the peak amplitude of J t to 1.s

Composite non-reflecting or absorbing
Ž .boundary conditions ABC’s are developed for

numerical calculation of radar wave propaga-
tion. The numerical absorbing boundaries were
primarily designed to simulate transmission of
energy at the edges of the computational do-



( )H.-W. Chen, T.-M. HuangrJournal of Applied Geophysics 40 1998 139–163 145

main such that no artificial waves would be
reflected. By combining the paraxial approxima-

Ž .tion of a one-way wave equation A and a2
Ž .damping mechanism sponge filter , we obtain

methods that effectively absorb various types of
Ž .waves Fig. 2 . Each type of ABC has two

separate modified methods. In the following
sections, we first demonstrate the behavior of
each absorbing mechanism and its correspond-
ing artifacts. The non-physical waves can be
sufficiently suppressed when composite bound-
ary conditions are applied.

Ž .The Clayton and Engquist 1977 A condi-2

tion is restricted to waves impinging on the
artificial boundary at angles up to 308. As gen-
erally known, the amount of the energy re-
flected from the boundary increases as the angle
of incidence increases. To compensate for such
an angle-dependent A condition, a modified2

floating A condition is proposed and tested. A2
Ž .dipping-layer model Fig. 3 is created to test

the behavior of the fixed and floating A ab-2

sorbing boundary conditions. The source is in-
tentionally placed on the surface and close to

Fig. 2. Configuration of composite absorbing boundaries
proposed for this study. Dashed lines denote the fixed and
floating A absorbing boundaries. The shaded region2

around the computational domain is the area where damp-
ing mechanisms are applied. Figs. 4 and 5 depict the radar
waves emit from source S and generate various artificial
waves within the boundaries. Artifacts associated with
such boundary conditions are indicated by ray paths. These
artifacts are sufficiently suppressed when composite
boundary conditions are applied.

Fig. 3. A dipping-layer model used to test non-reflecting
Ž .A boundary conditions. The source large dot is located2

at the surface but close to the edge of the numerical
boundary. The receiver array is located along the free
surface. Reflections are produced from the boundary sepa-
rating two different types of rocks with different propagat-
ing velocity, although they have the same Q values.

the edge of the model. Under such situation, the
incidence angle of the waves travelling to the
computational domain boundary is relatively
large while the angles of incidence for reflected
and transmitted waves travelling to the opposite
side of the model boundary are relatively small.

The simulation of wave propagation phenom-
ena can be computed and visualized via a series
of fixed-time snapshots through the model do-
main or directly by the theoretical calculation of
radar responses recorded at each pre-defined

Ž .station location radargrams in the space–time
domain. The behavior of each type of absorbing
boundary condition can be evaluated by examin-
ing the calculated responses both from wave

Ž .field snapshots Fig. 4 and the corresponding
Ž .GPR radargrams Fig. 5 . Fig. 4 illustrates the

Žcomputational artifacts without absorption Fig.
.4a and their suppression associated with

boundary conditions by comparing results ob-
Ž .tained from floating A Fig. 4b , fixed A2 2

Ž .Fig. 4c , and a combination of both absorbing
Ž .algorithms Fig. 4d . The artifacts are related to
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Ž .Fig. 4. Fixed-time 225 ns wave field snapshots are computed for the model of Fig. 3. For comparison, radar wave
Ž .responses without absorbing boundary are shown in a . Variations in radar responses due to different nonreflecting

Ž .boundary conditions b to d are discernible. Arrows denote the artifacts related to their corresponding absorbing algorithms.
The non-physical waves generated from fixed and floating A are effectively reduced after applying both conditions. The2

waves reflected, transmitted, and multiple reflections between fixed and floating A boundaries can be further suppressed2

using a damping mechanism within the specified damping zone. All panels have the same amplitude scaling factor. Fig. 5
presents the corresponding radargrams.

the algorithm since they disappear when the
algorithm is changed. Fig. 5 contains the corre-
sponding synthetic radargrams for the same
wave field, recorded on the surface. A notice-

Žable ringing effect is more pronounced Figs. 4b
.and 5b for floating A due to leakage of2

trapped waves. However, such phenomena were
effectively suppressed when a fixed A condi-2

tion was superimposed at the edges of the model.
Although combining two algorithms works well
Ž .Fig. 4d , some small nonphysical reflections
from the ABC’s still persist.

Ž .Cerjan et al. 1985 presented a spatial sponge
filter that employs a damping mechanism

ŽKosloff and Kosloff, 1986; Sochachi et al.,
.1987 to systematically eliminate the wave am-

plitude in a strip along the boundary of the
Ž .numerical mesh. Israeli and Orszag 1981 also

used a ‘Newtonian cooling’ or perturbation term
scaled by a damping coefficient for the wave
equation to improve absorption of outgoing
waves. The absorbing buffer region has an arti-
ficial taper with an exponential function of

Ž Ž .2.exp yk Nyn to reduce waves reflectedb i

back into the computational domain. Numerical
experiments indicate that artificial damping can
be used to effectively suppress the unwanted
nonphysical waves. The frequency-dependent
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Ž .Fig. 5. Synthetic time sections calculated from the model Fig. 3 for various types of A absorbing boundary conditions.2

Radargrams are recorded along the earth’s surface. Arrows in b to d are non-physical arrivals due to the imperfection of the
boundary conditions. Those non-physical reflections from the boundary of the computational domain are considerably

Ž .reduced by superimposing two different A algorithms in d . However, small edge reflections from boundaries are still2

visible. Fig. 4 depicts the corresponding snapshots.

absorption can be further enhanced by increas-
ing the attenuation properties exponentially
within the damping region toward the edges.
The loss tangent within the damping zone is

X Ž Žaltered according to tan d s tan dPexp yk Nl
.2.yn where both k and k are constant andi b l

N is the width of the absorbing region. We also
tuned the impedance contrast in the absorbing
region to minimize reflections. Synthetic radar-
grams in Fig. 6 illustrate the two possible com-
binations of absorbing methods. Fig. 6a sum-
maries the results after applying both artificial
damping and physical attenuation properties

within the absorbing region. Fig. 6b demon-
strates how to combine the A and sponge filter2

approach. Both cases produce nearly the same
result, indicating that the composite boundary
condition may effectively suppressed those un-
wanted waves from the numerical model. The
composite absorbing boundary conditions are
used in the following synthetic and field data
applications. The proposed method seems to
work quite well with acoustic propagation prob-
lems. However, the algorithm requires some
further investigation if coupled electromagnetic
wave fields are considered.
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Ž .Fig. 6. Synthetic radar responses calculated from a different combination of absorbing mechanisms. a Synthetic radargrams
calculated from the model with the combination of damping and alternating attenuation properties in a region around the

Ž .periphery of the computational domain. The radargrams in b are the result of applying all the available boundary
conditions.

The synthetic example in Figs. 3 and 4 and
4–6, reveal that the artifact due to the limitation
of the angle-dependent A condition can be2

somewhat alleviated when combined with the
damping condition. One the other hand, the
restriction on determining the width of the
damping region is frequency-dependent. The
higher the dominant frequency of the computed
response requires that a narrower width of the
damping zone be used. The advantage is that
any combination of paraxial approximation of
A and damping algorithms actually reduces the2

width of the absorbing region. For example, in
the synthetic test model of Fig. 6, we used 20
grid points for the damping method, whereas 10
grid points were used after A conditions were2

included.

4. Forward modeling of radar data

The 2-D modeling algorithm described above
enables a synthesis of the radar response for an
extensive variety of realistic cases in GPR ex-

ploration. In the following synthetic and field
data applications, all models are defined through
electrical properties and attenuation factors. The
computed synthetic radargrams do not show
absorbing areas surrounding the numerical
model. Although the Q model can be specified
independently in contrast to the velocity model,
for simplicity, a Q boundary defined in this
work is assumed to be the same as the velocity
boundary. The following sections present the
synthetic examples first followed by the field
data application.

4.1. Synthetic examples

The second part of this paper focuses on
simulating radar responses from a specified
model and recording at any particular antenna
layout, according to actual field data acquisition
geometry. The recorded field data can be ar-
ranged according to the geometrical relationship
between transmitter and receiver. The recorded
time section can be generally classified into
common-source, common-offset, and common-
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midpoint reflection profiles. Various synthetic
examples demonstrate the capability of simulat-
ing different transmitter and receiver configura-
tions and their corresponding radar profiles. To
simulate primarily reflected radar waves and to
accelerate the entire iterative modeling proce-
dure, a hypothetical simulation scheme, base on
the exploding-reflector concept, can be con-
ducted. For practical purposes, using the explod-
ing-reflector concept to simulate a zero-offset
section is advantageous when performing a
computer simulation of field data. The limita-
tions of the exploding-reflector approach are
discussed when simulating both field and syn-
thetic radar gathers.

4.2. Variable recording geometries

Ž .Fig. 7 depicts three cylindrical objects pipes
buried at different depths and surrounded by a
relatively homogeneous argillaceous sandstone.
Three data acquisition modes are illustrated ac-
cording to their different transmitter and re-
ceiver configurations. The ray paths in Fig. 7
illustrate the possible propagation paths which
correspond to the main reflections observed in
the different gathers. A 400-MHz antenna was
used to collect radar reflection data with a 70-ns
time window. Fig. 8 presents the results of
simulating actual responses based on different
field acquisition geometry. Clearly, the reflec-

Žtions generated on the common-shot gather Fig.
. Ž8a , zero-offset constant-offset at which both

. Ž .antennas coincide Fig. 8b , and exploding-re-
Ž .flector model Fig. 8c were predicted from

finite-difference modeling. The amplitude of the
radar reflections is relatively strong due to the
high impedance contrast and distinct differences

Žin the electrical properties between metal tan
7. Žds10 and argillaceous sandstone tan ds

y3.10 . The field experiments also confirm such
observations. The radar time section in Fig. 8c
was constructed on the basis of the exploding-
reflector concept under the condition that the
media velocity must be multiplied by two. No-

Fig. 7. Model with three cylindrical metal pipes buried at a
depth of 0.5, 1.0 and 1.5 m, respectively. These pipes are
surrounded by a homogeneous argillaceous sandstone. The
model has 501=251 grid points along x- and z- direc-

Ž . Ž .tions, respectively. Common-source a , zero-offset b or
constant-offset radar gathers can be constructed by the
radar simulator. The primary reflection can be simulated

Ž .via the exploding-reflector concept c . S and R represent
transmitter and receiver locations being used to produce
synthetic radargrams. Dashed lines represent the possible
ray paths which corresponding to primary and multiple
reflections presented in Fig. 8.

tably, the direct arrivals are not predicted by
such an algorithm. Comparing arrival times,
moveout curvature, amplitude of reflected and,
typically, the multiply reflected radar wave re-
veals the fundamental differences among three
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Ž .Fig. 8. Synthetic radar profiles obtained from the model Fig. 7 . Different source and receiver configurations produce
different radar responses. Multiple reflections obtained from different antenna geometry are different for total travel time,
amplitude, and waveforms.

simulated time sections. Such differences are
primarily produced from different algorithms
due to different propagation path effects. It is
important to choose the right radar wave simula-
tor when a particular radar section is recorded

using a specific transmitter and receiver config-
uration.

Fig. 8 illustrates the limitations of simulating
a zero-offset radar section based on the explod-
ing-reflector concept. Comparing Fig. 8b and

Ž .Fig. 9. The model left , representing an internal void space beneath airport or highway pavement, is adopted to calculate
Ž .radar responses for engineering applications. Comparison of the calculated radar responses between low middle and high

Ž . Ž .right loss tangents tan d properties in the subgrade soil are shown. Variations in the radar signal caused by differences in
the electrical properties in the soil-refilled void produces a radar signal with different amplitudes, mainly as a result of
attenuation.
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Fig. 8c obviously reveals that the exploding-re-
flector model fails to simulate multiple reflec-
tions. Such a difference in multiple reflections,
e.g., the ray paths of the first multiple generated
from the right-most pipe is illustrated in Fig. 7.
The total two-way travel time of the multiple
reflections generated on the zero-offset section
differs from those on the exploding-reflector
model. The ray paths are different as Fig. 7
indicates. The waveform and its amplitude of
the first multiple is obviously different. This is
primarily because the exploding-reflector model
predicts the wave emitted by both sides of the
interface to have the same polarity. In contrast,
the physical reflection coefficients from oppo-
site sides should have opposite polarities. Thus,
some precaution is required when interpreting
field and synthetic data. If lateral velocity varia-
tions exist, the reflections produced by objects
surrounding the main reflector may not be accu-
rately predicted by the exploding-reflector
model. Such phenomena can also be observed
in this example.

4.3. Engineering applications

In geotechnical applications, GPR can be used
to detect disturbed soils and backfills as well as
to locate void and delaminations beneath con-
crete structures, e.g., bridge decks, highways,
and airport pavements. These objects exhibit
markedly different electrical properties com-
pared to surrounding materials. For example, a
void beneath pavement is formed because of
leaks and ex-filtration of the soil, and is later
filled with low dielectric materials such as loose
sand or silt. The electromagnetic constants may
vary because of changing environmental condi-
tions. A radar simulation of subsurface and
internal voids is computed to predict GPR re-
sponses in the field survey. The synthetic model
Ž . ŽFig. 9 was represented by a low-velocity high

. Ždielectric layer filled with high-velocity low

.dielectric material. The loss tangent in the U-
shaped trench is varied to observed the differ-

Žence in the computed synthetic radargrams Fig.

.9a,b . Amplitude decay caused by the high at-
tenuation medium can be observed. Also ob-
served is a phase change produced from corner

Ž .diffractions and reflections at 180 ns . A focus-
ing effect due to the crossing of reflections, at
approximately 200 ns is observed as well.
Therefore, the possibility of detecting and esti-
mating the size of an existing void beneath
concrete airport runways from noisy data sets

Fig. 10. Numerical models used to investigate their corre-
Ž .sponding synthetic radar records Fig. 11 collected along

the surface. Underground fresh water or drainage pipe
Ž . Ž . Ž .upper , reinforcing rebar middle , and pipes lower are
used in this study. Both air and water are included in the
concrete sewer conduit, which is buried at a depth of 1.0
m. A buried drainpipe or electrical cable pipe system with
a variable size ranging from 10 to 20 cm is modeled to
investigate the resolution power of radar responses.
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can be achieved by using forward modeling
procedures. The advantage of simulating the
GPR wave field over the ray simulation method
can be recognized from the computed re-
sponses. Reflections, refractions, diffractions,
and multiples are all automatically produced.

4.4. Conduit, metal rod, and pipes

GPR is also frequently used to locate features
such as buried pipes, reinforcing rod in concrete
structures, and conduits embedded in the ground

for water, sewer, electrical cable or gas connec-
tions. Locating underground pipes for efficient
pipe system management and for avoiding dam-
age during excavation has become a relevant
issue in metropolitan areas. Fig. 10 depicts syn-
thetic models that are commonly encountered in
such GPR applications. The model includes un-

Ž .derground concrete conduits upper , reinforced
Ž . Ž .metal rods middle , and pipes lower . The

main targets were assumed to be buried in a
homogeneous argillaceous sandstone environ-
ment. The loss tangent of the background sand-

Fig. 11. The radar time sections computed from their corresponding numerical models in Fig. 10. Upper panels, from left to
right, are the corresponding common-source gathers. Lower panels are the constant-offset gathers which are frequently used

Ž .during field data acquisition. A 400 MHz transmitter antenna is located at 2.5,0.0 m and radar data is collected along the
earth’s surface.
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stone is 0.001 with a ground velocity of 0.075
mrns. The antenna operating frequency used in
these cases is 400 MHz. These models are
somewhat over simplified to clearly avoid any
ambiguous interference from surrounding
anomalous objects and to see the main reflec-
tions from the major target.

Fig. 11 presents the synthetic radar time sec-
tions obtained from the corresponding models
Ž . Ž .Fig. 10 . Common-source upper panels and

Ž .constant-offset lower panels radar profiles are
generated from finite-difference simulators. For
comparison purposes, Fig. 11 presents various
radar reflection patterns as a guide for interpret-
ing radar profiles and signatures. The amplitude
of reflections from buried conduit and iron rod
is rather obvious since the dielectric contrast
between these materials and surrounding back-
ground material is relatively substantial. The
presence of water and air with different dielec-
tric constants produces multiple reflections when
electromagnetic waves are propagated into the
target. The distinguishable multiples and flat
reflections, as found from their radargrams, can
be a good indicator for identifying a drainage
ditch or sewer system. The radar diffractions
from each pipe within the multiple pipe system
cannot be resolved even though a relatively high
frequency antenna is used. Post-processing tech-
niques can be applied, e.g., migration, to en-
hance the final image resolution. However, the
response from pipes of various sizes produce
specific patterns which can be used as indicators
when locating an underground pipe system in
the field. The lateral amplitude changes and
variations in diffraction patterns for various
kinds of pipes can be used for further analysis.
Therefore, radar simulation can serve as a tool
for interpreting different radar responses from
different materials and from a variety of shapes
and interfaces.

4.5. Archaeological applications

GPR is a practical tool in facilitating the
determination of the depth and shape of buried

objects and in surveying protected archaeologi-
Ž .cal sites Bevan, 1991 . Forward modeling of

synthetic radargrams can be used to interpret
radar signatures obtained from the field. The
method can accurately estimate the reflected TE
wave energy and waveform from the structural
characteristics of the burial mound. Many possi-
ble models can account for the measured radar-
grams. However, the number of possible models
can be reduced when prior information on the
buried structure is available.

The concept that ‘the present is the key to the
past’ in physical geology processes can be used
to facilitate interpretation of the radar signatures
from a typical buried wooden coffin and its
related structure of construction. Fig. 12 depicts
a schematic feature of a grave type commonly
found in Taiwan. The most distinctive feature is
the disturbed soil in the filled excavation. The
soil filling the grave shaft could have a different
electrical and magnetic signature from the natu-
rally undisturbed earth. A wooden or stone cof-
fin could be present at the bottom of the grave
shaft. If there is a burial vault of brick or stone,
the existence of an air-filled cavity in the brick
or stone may offer a relatively large contrast
compared to the surrounding soil. If an old
coffin is still partially intact, nothing can remain
except for bones; there might be air in the void.

Fig. 12. A generalized model of a buried tomb with
features such as a reinforced concrete or a brick chamber
and wooden coffin on the floor surface. The tomb has a
rectangular shape infilled with disturbed soil. An air-filled
cavity inside the coffin produces a fairly strong impedance
contrast among the soil, coffin, and void system.
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Fig. 13 displays the simulated synthetic radar
Žprofiles for an antenna frequency of 200 left

. Ž .panels and 100 MHz right panels , respec-
Ž .tively. Common-source upper panels and con-

Ž .stant-offset lower panels radar gathers were
generated to compare their radar signatures to
major diffractors and reflectors. Both gathers

Ž .indicate a rather peculiar pattern at 27 ns for
radar waves reflected from the top of the rein-
forced concrete vault. Reflections from the top
and bottom of the coffin; multiple reflections
propagating within the air-filled cavity inside
the wooden coffin; diffraction from the corners

and interference patterns can be identified from
the synthetic radargrams. The relatively ‘bright’
radar reflections due to a large impedance con-
trast between the air-filled coffin and soil are
good indicators for locating burials. These radar
signals may be interfered with the scattered
energy from the surrounding soil and can be
further attenuated if the grave site does not have
a good culvert system to drain underground
water. The depth of penetration of a radar wave
can be severely limited due to environmental
change. The human skeleton generally cannot
be directly detected. However, some detectable

Ž .Fig. 13. Synthetic radargrams constructed from the model in Fig. 12. Common-source upper panels and constant-offset
Ž . Ž . Ž .lower panels gathers of electric field responses along the surface with a central frequency of 100 right and 200 left
MHz.
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responses from the radar profile might suggest a
grave buried under the ground. These features
include discontinuous subsurface strata; soil at
the bottom of the burial site which is usually
much more compact so as to produce a rather
strong contrast. The body decay may alter the
chemical composition of the surrounding soil.
These features can be treated as useful guidance
in locating unmarked burials.

4.6. Offset and angle-dependent amplitude and
traÕel time Õariation

Ž .Amplitude variation with offset AVO , or
Ž .amplitude variation with incidence angle AVA

analysis for ground water exploration is another
pertinent issue. For AVOrAVA analysis, mod-
eling is used to gain qualitative insight into
variation of the amplitude from objective reflec-
tions. Radar reflections are produced by changes
in electrical impedance in the ground. When
GPR is applied, electrical impedance is domi-
nated by changes in the relative permittivity or
dielectric constant of the ground. The presence
of water content in the pore space of the soil
matrix can markedly vary the impedance con-
trast and attenuation properties of the material.
Radar wave simulation results demonstrate that
considerable variation of dynamic properties,
such as decreased amplitude caused by low Q
and temporal shift caused by physical wave
dispersion phenomena can be analyzed quantita-
tively.

Fig. 14 shows the model used for studying
the effect of moderately conductive ground wa-
ter interacting with a limestone and argillaceous
sandstone interface. To simplify the analysis,
the conductive water within each rock is as-
sumed primarily to alter the loss tangent value
without changing the velocity. Fig. 15 compares
amplitude variation with four dipping angles for

Ž .a fixed radar frequency 400 MHz and four
different antenna frequencies for a fixed dip
angle. In the calculated synthetic radargrams, a
rather distinctive reflection is produced from the
contrast in the loss tangent even for the same

Fig. 14. Synthetic model used for amplitude and traveltime
analysis. The solid line represents the water table. The
dashed line represents the lithological boundary between

Ž . Žlimestone upper layer and argillaceous sandstone lower
.layer . Common-shot radar data were collected along the

surface. These four interfaces produce the corresponding
reflections labeled in Figs. 15 and 16.

type of rock. The amplitude reduction caused by
attenuation is rather distinguishable in Fig.
15b,d. For a fixed frequency, amplitude varia-
tion with incidence angle in Fig. 15a, and a
shifting of amplitude decay due to the thin bed
tuning effect in Fig. 15b are more apparent. For
a frequency-dependent dielectric medium, the
amplitude reduction is greater for a higher fre-

Ž .quency Fig. 15d than for a lower frequency
response. Frequency-dependent reflection coef-
ficients can be identified in Fig. 15c. Fig. 15c
and d exhibit the same behavior in amplitude
variation with frequency across any type of
interfaces.

Fig. 16 shows a comparison of travel time
variations in reflection arrivals versus incidence
angle at different dip angles among
limestonersandstonerwater table interfaces and
their variation at different frequencies. Rela-
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Fig. 15. The extracted amplitude responses as functions of offset for reflections produced from the model in Fig. 14.
Ž . Ž .Amplitude variation studies for various dip angles for a dominant frequency of 400 MHz are shown in a and b . The

Ž . Ž .variations in amplitude vs. antenna frequencies are shown in c and d . The dip angle of the boundary is fixed at 108. The
variations of reflected radar amplitudes associated with four different types of interfaces are labeled. These interfaces were
produced mainly by the difference in water content over a limestonersandstone interface or by the difference in attenuation
when the water table is in the same rock unit.

tively small variation of arrival time occurs as
the frequency is altered in the computed reflec-

Ž .tions see Fig. 16c and d . The early arrival
results from physical dispersion according to

Ž .which phase velocity therefore group velocity
is greater than the non-dispersive velocity for
the entire range of frequencies. Such dispersion
phenomena for argillaceous sandstone are more

distinguishable than the responses from lime-
stone when measuring against the reflected en-
ergies produced by the attenuating interface.

4.7. Field data application

To confirm the feasibility of our radar simu-
lation scheme, we present a synthesis of GPR
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Fig. 16. Travel time responses as functions of offset for reflections produced from the model of Fig. 14. Travel time
Ž . Ž .variation studies for various dip angles and antenna frequencies are shown in a to d . The variations of reflection times for

various situations are labeled. The dispersion phenomena is indicated by arrival time variations with frequency from
Ž . Ž .different interfaces are shown in c and d .

field data from data collected on a gymnasium
construction site on the campus of NCCU. The
geological environment is primarily un-con-
solidated Quaternary fluvialraeolian sediments.
Geological information obtained from geologi-
cal investigations, drilling, and trenching indi-
cate that the Shan-Hsiung and Mei-Shan forma-
tion are the two major layers covering the entire
campus area. The excavation during construc-

Žtion of the basement reveals the uppermost ap-

.proximate 12 m part of the stratigraphic units.
The geological column consists of 1.0–1.5 m
weathered lateritic soil overlying 2.0–7.0 m of
poorly sorted gravel interbedded with sand and

Ž .clay Shan-Hsiung Fm. , and the water-bearing
Mei-Shan Fm. primarily composed of yellowish
sandy clay and blue to grayish silty clay. A
wedge-shaped irregular thickness of siltstone is
interfingered with a clay layer within the Mei-
Shan Fm.
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Fig. 17 presents one of the data sets acquired
during the Fall of 1994. The GPR survey was
conducted using the Sensors and Software
pulseEKKO IV digital acquisition system. A
100 MHz, 400-V power antenna with a 3-m
transmitter-to-receiver antenna separation was
used; the trace separation was 20 cm; the time
sampling increment was 0.8 ns; and 128 traces
were stacked at each receiver location. Spectral
analysis indicates a downshift in the dominant
frequency to approximately 50 MHz even
though 100 MHz antennas were used. There-
fore, synthetic radargrams with dominant fre-
quency of 50 MHz were generated to simulate
the field data. Such downshift in frequency
content of radar signal indicates a relative strong
near-surface attenuation effect. The highly at-
tenuative near-surface material with moderately

varying stratigraphy features, including horizon-
tally layered depositional units and locally lap-
ping beds, can be observed from the excavation
profiles. The data set has large lateral amplitude
variations caused by the interference between
arrivals from scattered radar waves, lateral face
changes, and variation in attenuation. The rela-
tively weak reflections around 100 ns are almost
indistinguishable due to a smearing effect from
background scattered energy. However, the re-
flected energies with spatially varying ampli-
tude are revealed when the same data is dis-
played with polarity reversal as shown in Fig.
17b.

The potential of the current GPR modeling
scheme is demonstrated when simulating and
interpreting the field data. The underground
structural features were first estimated with an

Fig. 17. Field data acquired at a construction site on the NCCU campus. The bistatic radar profile is acquired with an
antenna separation of 3 m. The radar signals are highly attenuated such that there are no coherent reflections below 150 ns.
Ž . Ž .a The radargrams are gained and clipped to display a weak reflection appearing around 100 ns. b The same data are
displayed with the reversed polarity.
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in-house developed FK migration scheme under
a constant background velocity. During the iter-

Žative modeling process, FK modeling Zeng et
.al., 1995 was occasionally used to check

impedance contrast whenever there was large
change in geometry and velocity. To save ef-
forts in modeling and computational time, the
synthetic data produced by the exploding-reflec-
tor concept was used first to fit both primary
reflection time and amplitude observed in the
NMO corrected field data. The final step is the
modeling of actual bistatic radargrams with a
constant-offset finite-difference modeling

Ž .scheme to obtain a satisfactory result Fig. 18 .
Direct radar waves in the air are not part of

the synthetic responses. The model parameters
and reflector geometries were obtained by ini-
tially fitting the structural geometry based on
reflection time and then iteratively altering the

attenuation distribution based on reflection am-
plitudes. Although the current simulation scheme
is capable of modeling backscattered radar en-
ergy from changing media properties, such scat-
tering energy is not presently included. The

Ž .final model Fig. 19 predicts the main features,
and even some small wave interference patterns
are well simulated. The relatively small reflec-
tions generated from differences in attenuation
and dielectric properties between two clay units
within Mei-Shan Fm. is also adequately mod-
eled. According to the modeling result, an ex-
tremely thin silt bed lies on top of a gravel
formation between stations at 24 to 48 m at
depth of 1.25 m. The silt layer produces a fairly

Ž .large amplitude due to thin-bed tuning effects.
Radar signal loss and amplitude fluctuations
were significant even for small changes in
thickness and conductivity during modeling. Si-

Ž .Fig. 18. Synthetic radar responses generated from two different simulation schemes. a Direct waves in the ground are not
Ž .synthesized in the monostatic radargrams simulator based on the exploding-reflector concept. b A synthetic bistatic radar

time section is generated from a generalized finite-difference scheme. Fig. 19 presents the final model.
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Ž . Ž .Fig. 19. The final model obtained form finite-difference modeling. Velocity upper right , loss tangent lower right , their corresponding relative dielectric
Ž . Ž .permittivity upper left and attenuation lower left distributions used to produce the finite-difference modeling result. T denotes the thin bed.
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multaneous correlations of field data from
monostatic modeling via FK modeling and
bistatic modeling through finite-difference simu-
lation schemes provide better constraints on the
final model. The model was also used to model
other radar profiles collected in the same area
with different offsets. The results correspond
well to those of the model.

5. Discussion and conclusion

Numerical algorithms for modeling GPR data
are developed, tested and implemented for 2-D
media. We have implemented, applied and com-
pared three algorithms for numerical synthesis
of monostatic and bistatic GPR profiles. Imple-
menting the attenuation mechanism provides a
highly effective technique for simulating more
realistic earth media. The numerical scheme
naturally includes typical parameters to accu-
rately describe the physical properties, e.g., ve-
locity and attenuation, to mimic radar wave
propagation through attenuative, near-surface
ground materials. The approach presented herein
may be an adequate tool for resolving geophysi-
cal problems and to interpret radargrams quanti-
tatively. Attenuation effects considerably alter
the recorded GPR wave fields.

The current implementation of composite ab-
sorbing mechanisms works quite well with the
decoupled TE mode radar propagation prob-
lems. The method effectively suppresses both
incoming and outgoing waves within a rela-
tively narrow absorbing region. One distinct
feature is that the width of the absorbing zone is
inversely proportional to the dominant fre-
quency used. Thus, the limitations of incidence
angle and frequency-dependent properties can
be alleviated in our approach. Optimal absorb-
ing boundary conditions include floating, fixed
one-way paraxial wave approximations, damp-
ing the radar wave field dynamically, or by
adjusting attenuation properties of the model.
The impedance contrast in the absorbing buffer

region can also be used to minimize reflections.
However, the algorithm requires some further
investigation if coupled electromagnetic wave
fields are considered.

We have demonstrated how to implement the
simulation of GPR data by solving the damped
scalar wave equation via staggered-grid finite-
difference approximation. Accurately modeling
of attenuation, large velocity contrast, and loss
tangent variations of near-surface ground mate-
rials is also demonstrated through comparisons
with field data. The wave-based modeling auto-
matically includes full wave field phenomena
Ž . Ždiffraction for electric properties velocity and

.attenuation and geometrically complicated sub-
surface structures. Any other numerical means
of solving the scalar lossy wave equation may
also be used. Finite-element or pseudospectral
solutions of Maxwell’s equations can also han-
dle arbitrary dielectric constants and attenuation
variations. Implementing staggered-grid pseu-

Ž .dospectral approximation Chen, 1996 for dis-
persive and attenuative viscoacoustic material
through memory variables is a highly promising
alternative to account for the intrinsic attenua-
tion.

Synthetic common-shot, constant-offset radar
profiles based on actual transmitter-to-receiver
configurations and based on the exploding-re-
flector concept were demonstrated to mimic
different types of radar survey geometries.
Computations in the second scheme are rela-
tively fast except that air and ground waves are
not included. Also, some caution should be
exercised when modeling multiple radar reflec-
tions. The proposed numerical schemes can ac-
curately model both monostatic and bistatic data,
including reflection profiling, wide-angle reflec-

Ž .tion and refraction WARR , and transillumina-
tion modes. Analyzing amplitude and arrival
time variation with an offset provides a quanti-
tative estimation of electric properties, attenua-
tion, and dispersion behavior, possibly leading
to an indirect measure of porosity, fluid content,
and permeability of near-surface ground materi-
als.
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The discrepancies arising between the field
observations and synthetic profiles may be at-
tributed to two main causes. The first is the fact
that the transmitter and receiver directivity pat-
terns are not explicitly considered in the current
scheme. However, an equivalent solution can be
obtained if the antenna radiation pattern is
known. The superposition of a few single elec-
tric sources may yield satisfactory results based
on the direct numerical grid method, which is
similar to the simulation of various seismic

Žsources Chen and McMechan, 1992a,b; Chen,
.1996 . The second is the fact that most scatter-

ing arrivals produced from gravel and other
randomly scattered buried objects are not con-
sidered. This will be one of the subjects in our
future research. Corrections accounting for
computed 2-D geometrical spreading and atten-
uation to 3-D cases are not included; however,
those are expected to be less important.

The GPR simulator developed herein is a
useful and a highly effective tool for future
developments in GPR data modeling and pro-
cessing projects. The capability of extracting
electrical properties from field data have a cer-
tain potential for lithological identification and
discrimination. Modeling of coupled electro-
magnetic vector wave field responses is feasible
and is the next necessary step. The same wave
field extrapolation scheme can be also used for
wave field migration in imaging near-surface
structures for engineering and environmental
applications. Three-dimensional forward simula-
tion of GPR is also necessary to account for 3-D
propagation effects which are commonly ob-
served in the radar section.
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