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SUMMARY
This paper presents a geometrically based algorithm for computing synthetic seismo-
grams for energy transmitted through a 3-D velocity distribution. 3-D ray tracing
is performed to compute the traveltimes and geometrical spreading (amplitude). The
formulations of both kinematic and dynamic ray-tracing systems are presented. The
two-point ray-tracing problem is solved by systematically updating the initial conditions
and adjusting the ray direction until the ray intersects the specified endpoint. The
amount of adjustment required depends on the derivatives of the position with respect
to the given starting angles between consecutive rays. The algorithm uses derivatives
to define the steepest-descent direction and to update the initial directions. The
convergence rate depends on the complexity of the model.

Test seismograms compare favourably with those from a 2-D asymptotic ray theory
algorithm and a 3-D Gaussian-beam algorithm. The algorithm is flexible in modelling
arbitrary source and recorder geometries for various smoothly varying 3-D velocity
distributions. The algorithm is further tested by simulating surface-to-tunnel vibroseis
field data. Shear waves as well as compressional waves may be approximately included.
Application of the algorithm to a data set from the Rainier Mesa of the Nevada Test
Site produced a good fit to the transmitted (first arrival ) traveltimes and amplitudes,
with approximately 15 per cent variation in the local 3-D velocity.
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techniques may include ray theory (Julian & Gubbins 1977;
INTRODUCTION

Lee & Stewart 1981), Kirchhoff–Helmholtz integration (Trorey
In seismic exploration and earthquake seismology, numerical 1970; Hilterman 1970), a hybrid analytic–numerical algorithm
modelling is a practical tool to understand physical seismic- (Mikhailenko 1984), 3-D slowness integration (Burdick &
wave propagation within complex 2-D and 3-D subsurface Salvado 1986), 3-D Fourier transformation (McMechan, Wen
structures. The growing interest in wave propagation simu- & Morales 1988), wavenumber–frequency integration (Bard &

lation is widely and successfully applied to understand various Buchon 1980a,b), finite differences (Mufti 1990), finite elements
wavefield phenomena generated by a passive source (earth- (Smith 1975), the WKBJ method (Chapman 1978; Sinton &

quake) or a controlled source (dynamite). Seismic data are Frazer 1982) and phase integration (Frazer & Phinney 1980).

being recorded more densely and in increasingly diverse array Previous work on 3-D ray-based modelling ranges from

traveltime computing based on shooting and bending methodspatterns. From field observations it is increasingly apparent

that the Earth, in most regions of seismic interest, particularly (e.g. Julian & Gubbins 1977; Um & Thurber 1987), through

geometrical spreading (cf. Wesson 1970) to computation ofthose that are tectonically active, is significantly heterogeneous

in all three spatial dimensions. In the past ten years, there has synthetic seismograms. The methods involve searching for a

ray and calculating the minimum traveltime and ray pathbeen a changing trend in modelling algorithms, from 1-D and

2-D to 3-D simulation of wave propagation phenomena. between two prescribed locations. The high-frequency approxi-

mation of ray-theory synthetic seismograms has been developedNumerical modelling is potentially valuable in both survey

design and data interpretation. by a variety of methods including Gaussian-beam and

paraxial-ray approximations (Červený & Pšenčı́k 1983;Synthetic seismogram simulation is especially important in

describing wave propagation effects due to changes in model Červený & Klimeš 1984; Beydoun & Keho 1987), and dynamic

ray tracing (Červený & Hron 1980; Azbel et al. 1984; Červený,geometry and velocity structures. The numerical modelling
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Klimeš & Pšenčı́k 1988). The basic problem of numerical ray- published reports on the application of 3-D synthetic seismo-

grams to the modelling of 3-D field data. The major contri-theory modelling of seismic wavefields in a 3-D structure
consists of two-point ray tracing. Two-point ray-tracing prob- bution of the present paper is to develop a relatively simple

and straightforward geometrically based algorithm and tolems may be solved by using Fermat’s principle (Waltham

1988), by solving a finite system of equations (Pereyra 1992; apply it to a real data set.
Hanyga 1988), by using point-to-curve tracing (Hanyga 1996)
and by shooting in the normalized ray domain (Bulant 1996).

THEORY
A scheme based on the expanding-wave-front theory was

recently developed as an alternative to conventional ray-path The synthetic seismograms are high-frequency approximations
computed for transmitted (refracted) energy in a 3-D velocitycomputing. Reshef & Kosloff (1986) proposed the initial idea

on the basis of the eikonal equation. Vidale (1988, 1990) distribution. The approach is purely geometrical. The major
steps involve model building, two-point seismic ray tracingpresented a finite-difference scheme to calculate the traveltime

at all corners of cubic cells. Van Trier & Symes (1991) proposed using a shooting technique; the calculation of geometrical

spreading, source and recorder directivity, and the free-surfacean improved version for solving the eikonal equation by an
upwind finite-difference scheme. Podvin & Lecomte (1991) conversion coefficient (if required); resolution of the final

response vector into vertical and horizontal components; andpresented a parallel version of their finite-difference calculation.

Dellinger (1991) later applied it to anisotropic media. Qin convolution of the impulse response with a source time
function.et al. (1992) further improved the algorithm by calculating the

traveltime along expanding wave fronts rather than along the Model building involves specifying a small number of points

for each boundary and velocity. The input velocity points areexpanding squares.
On the basis of Huygens’ principle and the algorithm of interpolated with a polynomial to provide a smooth, piecewise

continuous interpolation and the derivatives needed in theDijkstra (1959), Nakanishi & Yamaguchi (1986), Moser (l991)

and Saito (1989, 1990) developed efficient methods for finding ray tracing. The traveltime and geometrical spreading are
calculated by a 3-D ray tracer. A brief description of thethe shortest ray-path tracing on a model consisting of uniform-

velocity cells. These investigators suggested that the earth traveltime and ray-path computation is given in Appendix A.
The algorithm follows the unified formulation of Pereyra, Leemodel can be parametrized into a network of nodes on the

boundaries of block cells. Calculating the traveltime from a & Keller (1980) as summarized by Lee & Stewart (1981).

Seven equations (A3) are solved by numerical integrationsource to all nodes is reduced to a problem of sparse graphic
searching. Cao & Greenhalgh (1993), Fischer & Lees (1993) using the subroutine  of Shampine & Gordon (1975).

Amplitude computation is based on the simplified approachand Klimeš & Kvasnicka (1994) developed similar techniques

for improving the efficiency of shortest-path ray tracing with of Wesson (1970) and May & Hron (1978), presented below
and in Appendix B.error analysis. Kao & Chen (1996) presented a parallel

implementation of a similar algorithm, using irregular poly- An important application of seismic ray tracing is tracing a

ray from point A to point B when point B is located on thegonal cells for 2-D models and discrete convex blocks bounded
by polyhedral facets for 3-D models, on massively parallel surface z=0.0 km (Fig. 1). In this case, point A corresponds

to an earthquake hypocentre and point B to a seismic station.processors. Pereyra (l996) presented a different distributed

computational strategy for 3-D ray tracing and traveltime Let [X(a, b), Y (a, b), 0] be the point at which a ray leaving
point A with azimuth a and take-off angle b intersects theinversion for large-scale problems. As an alternative, the wave-

front construction technique was introduced by Vinje, Iversen surface. The problem thus involves solving the non-linear

equations X(a*, b*)=XB and Y (a*, b*)=YB , where (XB , YB , 0)& Gjoystdal (1993). Ettrich & Gajewaki (1996) later applied
the algorithm to a 2-D Kirchhoff-style pre-stack depth migration. are the coordinates of point B and (a*, b*) are the initial

directions at point A of the ray joining points A and B. InMost of the methods described above pertain mainly to

the theoretical and computational aspects of seismic-wave the case of the two-point problem, one may begin initially
by assuming the ray direction at one point and subsequentlypropagation in complex structures and thus are occasionally

complicated to implement. To date, however, there are few (1) solving the initial-value problem and (2) adjusting the

Figure 1. An arbitrary ray through a seismic coordinate system. The coordinate systems, source and station locations, and position vectors used

in the two-point ray tracing are illustrated.
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initial ray direction until a ray that intersects the second point Note that in general, for rays originating at finite depth, żC≠0.

Finally, we have the desired partial derivatives,is found. The shooting method can be performed without using
the derivatives of changes in position along a ray to adjust the
initial ray directions, but fewer iterations of the above steps
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derivatives for a given a and b. The formulation for computing

derivatives on the basis of a dynamic ray-tracing algorithm is
presented in Appendix B.
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Consider tracing a ray from point A which intersects the

surface at point C and has a path length of S between A and ∂Y
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C. The initial direction of the ray is perturbed by da and db
such that after travelling a distance S from point A the new

where all quantities on the right are to be evaluated at the end-
ray has reached point C∞. Let (XC , YC , 0) be the coordinates of

point (X, Y , 0). The ray between a source and a recorder is
point C. By solving eqs B3, the derivatives (∂X/∂a) |C and

found by iterative adjustment of the take-off angle and azimuth
(∂Y/∂a) |C are known and we can approximate the position of

angle of the initial direction of a ray until the ray passes within
point C∞ by

a specified distance of the recorder. The convergence criterion
of the two-point ray-tracing problem is controlled by the
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db , amount of change in position at the endpoint compared to the

change from the previous iteration. The initial ray path is
systematically perturbed until the difference between successive
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db , iterations is within the error limit. This provides the traveltime

for the corresponding arrival in the synthetic seismogram.
Once a ray path joining the source and receiver is found, it
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can be used to initiate a sequence of ray calculations for the
neighbouring receiver positions. The algorithm may fail when

the ray hits a caustic or a shadow zone. Under such a condition,Now consider the parametric expression for the line passing
the search can be performed by finding another ray, usingthrough point C∞ in the direction of the ray at C, ẊC :
appropriate control parameters.

X(r)=XC∞+rẊC , (2) The total amplitude associated with a source-to-recorder
path is a combination of seven contributions. In the following

where r denotes a parameter representing distance along the sections, each contribution related to amplitude computation
line from C∞. The point at which this line intersects the surface by means of a ray-based modelling algorithm is described. The
is, to first order, the same as the point D with coordinates complex total amplitude Atotal can be written as
(XD , YD , 0) at which the perturbed ray intersects the surface.
Solving the equations Atotal=

ASDSDRR
GiGo

a
j

T
j
. (7)

XD (r)=xC∞+rẋC ,
Eq. (7) gives the amplitude; the power (energy) may be com-

YD(r) =yC∞+rẏC , puted as amplitude squared. AS represents the effective ampli-
tude radiated by the source and implicitly contains a source-

0=zC∞+rżC (3)
to-Earth coupling effect. Defining the source directivity in
terms of the energy per unit area of the focal sphere, DS andand eliminating r yields
DR are the source and receiver directivity factors, which contain

the radiation pattern as a function of propagation angle. More
XD (r)=xC∞+

ẋC
żC

żC∞ , details on radiation patterns can be found in Aki & Richards

(1980) and Kennett (1983). Gi and Go are the corresponding
in-plane and out-of-plane geometric spreadings. The productYD(r) =yC∞+

ẏC
żC

zC∞ . (4)
of Gi and Go represents the geometrical spreading of the ray

tube. The plane-wave reflection coefficient R and the trans-
When one substitutes for xC∞ , yC∞ , zC∞ , this becomes mission coefficients T determine the energy partition across

any velocity boundaries.

The effects of geometrical spreading on the wave energy anddX=XD−XC=A∂x∂a K
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where I0 is the initial intensity associated with the unit solid decreases in proportion to 1/S2eff and the amplitude decreases

in proportion to 1/Seff , if anelastic attenuation is neglected.angle dV and I is the intensity associated with the element of
area dA. This equation is valid for a 3-D medium through For a medium of uniform velocity Seff=s, the path length (and

distance) from the initial point, and the corresponding 1/s2which rays can be traced. Moreover, eq. (8) can be interpreted

geometrically as a bundle of rays emerging from a initial point decay of energy and 1/s decay of amplitude are well known.
Such an approach is advantageous in that the simplestwith initial directions filling the infinitesimal solid angle dV.

Considering some particular ray within the bundle, and the form of spreading formulation (Wesson 1970) is directly

implemented by interpreting the formula geometrically, with-infinitesimal area dA formed by the intersection of the bundle
with a plane normal to the ray at a given point along the ray, out explicitly solving the 19 equations simultaneously for each

ray (eqs B3). With this simplification, we have to solve sevendA is treated as an element of the wave-front surface at any

particular arrival time. The computation of the infinitesimal ordinary differential equations (eqs A3) simultaneously. This
algorithm, however, does not resolve the problem of infinitearea dA can be performed by determining the area of a parallelo-

gram projected onto a plane normal to the propagation amplitudes predicted for caustics, where the area of the ray

tube goes to zero. Eq. (8) must, obviously, be restricted todirection of the ray. The spreading calculation is implemented
by tracing two additional rays at fixed (orthogonal ) angle rays for which sin b≠0. Such a restriction, though relatively

insignificant, may be overcome by redefining ∂a and ∂b forincrements from the source-to-recorder ray. An infinitesimal

solid angle dV and the calculated area dA enclosed by these such rays, perhaps via a permutation of the axes, for example
from (x, y, z) to (z, x, y).three rays at a given point along the ray are thus defined.

Three rays are used to approximate the ray tube. The geo- The angle-dependent reflection and transmission coefficients

related to seismic plane waves incident on a plane interfacemetrical spreading calculation can be further decomposed
into the in-plane and out-of-plane geometrical spreadings by are based on Červený & Ravindra (1971), pp. 58–70. Both

reflected and refracted P-SV (16 different coefficients) and SHeqs (5) and (6) of May & Hron (1978).

A physical explanation of eq. (8) can be given as follows. If (four coefficients) waves for a single interface (cf. Fig. 2.8
of Červený & Ravindra 1971) are included explicitly in thewe define the effective spreading radius at a given point Seff

such that S2eff=dA/dV, then the energy at points along the ray computation. All the conversion coefficients and reflection

(a) (b)

Figure 2. (a) Model, (b) comparison of geometrical synthetic seismograms obtained from different algorithms. The velocity distribution (a) in the

model is a linear increase of velocity with depth. The synthetic time profiles [(b), upper panel] were computed using the 2-D algorithm of

McMechan & Mooney (1980). The synthetic seismograms [(b), lower panel] were obtained using the 3-D algorithm proposed in this paper. An

asterisk denotes the source location.
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Figure 3. Comparison of amplitude variation as a function of source-to-recorder distance. The amplitude values plotted are from the seismogram

profiles shown in Fig. 2. Solid lines and squares correspond to the 2-D and the 3-D algorithms respectively.

Figure 4. Comparison of synthetic seismograms for a more complicated example. The upper profiles were computed using the 2-D algorithm of

McMechan & Mooney (1980); the lower by the 3-D algorithm proposed in this paper. The velocity distribution in the model is a linear increase

of velocity with depth. The velocity varies from 3.05 km s−1 at the surface to 3.8 km s−1 at a depth of 10.0 km and 8.80 km s−1 at a depth of

25.0 km. An asterisk denotes the source location.
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and transmission coefficients are defined in terms of displace- and 2-D problems. The second test was a comparison of the

results with the 3-D Gaussian-beam algorithm of Červený &ment. The free-surface conversion coefficients are computed, if
required. The phase is shifted by p/2 each time the ray touches Klimeš (1984) for a 3-D velocity model. This test is of interest

as the two 3-D methods were developed and implementedan internal caustic. To generate a seismogram for a specified

receiver location, a summation is performed of all the rays independently; production of similar results provides increased
confidence in both formulations.incident at that location. The seismic wavelet is constructed

by a linear combination of a unit impulse with its Hilbert The model (Fig. 2a) employed for the first test was a linear

increase of velocity from 3.0 km s−1 at 0.0 km to 4.25 km s−1transform (Choy & Richards 1975). Convolving the impulse
response with an appropriate apparent source function at a depth of 12 km. Fig. 2(b) shows the vertical- and net-

horizontal-component seismograms computed for this modelcompletes the seismograms.

For each source-to-receiver path, a three-component seismo- using both the 2-D McMechan & Mooney (l980) algorithm
and the new 3-D algorithm for an explosive point-source ongram (one vertical and two orthogonal horizontal components)

can be resolved by decomposing the net amplitude, using the the Earth’s surface. A quantitative comparison (Fig. 3) reveals

that the two algorithms yield essentially the same results; minor(3-D) angle of incidence at the recorder. The direction of
orthogonal decomposition of the horizontal component is differences may be attributed to details of implementation of

the ray tracing and spreading.arbitrary; obvious choices are north–south and east–west or

radial and tangential. To avoid an excessive number of figures, Fig. 4 presents a more complicated model, in which the
velocity increases with depth at a rate sufficient for a triplingonly the net horizontal amplitude is plotted, to present the

maximum information within a single plot. of the traveltime. The traveltimes in the calculated synthetic

seismograms are multivalued functions for certain ranges ofMost seismograms (both synthetic and field data) are dis-
played here in a 3-D perspective format; each seismogram is source–receiver distance. The multipath problem is alleviated

by specifying a different ray group by redefining the initialplotted against time (t) at the spatial position (x, y) at which

it was recorded. This is a direct 3-D extension of the usual conditions with a range of azimuth a and take-off angle b, or
by shooting a bundle of rays and finding the correct one by2-D format for a linear recording array where each seismogram

is plotted at its source-to-recorder distance. interpolation. The traveltime, amplitude and phase behaviour
show similar results from both algorithms.

A more realistic 3-D test was performed using the 3-D

models and recording geometry of Červený & Klimeš (1984).
ALGORITHM TESTING

The velocity model was approximately reconstructed on the
basis of the velocity contour profiles presented by them.Before a new algorithm can be used with confidence, it must

be tested and compared with existing algorithms. Two types Synthetic seismograms for a single point-source, for three
parallel lines of vertical-component recorders, computed byof tests were conducted to test our algorithm. The first was a

comparison of the results with the 2-D algorithm of McMechan the Gaussian-beam method of Červený & Klimeš (1984) and

by the 3-D geometrical ray theory, are presented in Fig. 5.& Mooney (1980) for a l-D velocity model. This low-level test
was of interest because the proposed algorithm is an extension Except for the usual lack of energy in the pre-cusp region, the

new algorithm compares favourably with the Gaussian-beamof the McMechan & Mooney framework from 2-D to 3-D;

these two algorithms should yield the same solution for l-D computations.

Figure 5. Comparison of Gaussian beams for a 3-D model. The 3-D velocity model for computing synthetic seismograms was taken from Červený

& Klimeš (1984). The lower profiles were obtained using the Gaussian-beam approach. The synthetic data were evaluated along three profiles and

assumed to have vertical-component recorders on the surface of a 3-D model. The upper profiles are the corresponding output obtained using the

geometrical ray tracing algorithm presented in this paper.
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Figure 6. Simulation of seismic data recorded on a typical crooked refraction line with variable recorder spacing. In each panel, the asterisk

represents the source location. The velocity model used for generating the seismograms is as shown in Fig. 2(a).

Having shown that the geometrical ray theory produces
reliable results (within the limitations of the assumptions
involved in the implementation), we apply it to a variety of

examples of synthetic and field data.

SYNTHETIC EXAMPLES

One of the main advantages of the present algorithm is its
ability to handle arbitrary recording geometries when 3-D effects

must be considered. This facilitates modelling of refraction
lines, which are typically almost linear, but require projection
onto a common line to be processed by 2-D algorithms. Fig. 6

depicts an example in which seismograms with variable spacing
along a crooked recording line have been simulated directly
in 3-D.

Another geometry that is common, and difficult for displaying
data, is earthquake arrays (in which stations are often randomly
distributed on the Earth’s surface). Large, fixed earthquake-

recording arrays usually involve stations in geometrical patterns
such as circles or radial lines. Typical recording arrays,
especially those designed for measuring wave slowness (such

Figure 7. A circular recording array over a dipping structure modelas LASA and NORSAR) or for measuring strong-motion data
used to construct synthetic seismograms. The shaded plane corre-(such as SMART-1 and SMART-2) can be found throughout
sponds to a change in velocity gradient. The velocity field within thethe world. Fig. 7 illustrates the latter type, to mimic the pattern
model increases linearly with depth from 5.6 km s−1 at the surface toof the SMART-1 strong-motion arrays, where a circular
7.5 km s−1 at the shaded plane, and to 7.7 km s−1 at a depth of 10.0 km.recording array overlies a dipping structure.

Fig. 8(a) depicts synthetic seismograms for a source placed
at the surface of the model shown in Fig. 7, at (x, y, z)= decoupled S and P waves. The changes required for con-

structing seismograms are the substitution of S-wave velocities(2.0, 2.0, 0.0). The asymmetries in time and amplitude are due

to the asymmetry of the source and recorders with respect to in the model for calculating arrival times, selecting an appro-
priate S-to-P energy ratio and S directivity for the source, andthe structural dip.

All the foregoing examples have considered only P waves. using the correct geometrical factors for the resolution of

the net amplitude into vertical and horizontal components.If Poisson’s ratio is assumed to remain constant and an
isotropic radiation pattern for S waves is assumed, then a Fig. 8(b) presents synthetic seismograms containing both P

and S waves from a buried source for the model shown in Fig. 7.single ray tracer can be used for simulating both of the

© 1998 RAS, GJI 133, 363–378
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Figure 8. Synthetic seismograms obtained for the model shown in Fig. 7. The asterisk, (a) outside and (b) at the centre of the circle, denotes the

epicentre location. Seismic responses for an arbitrary source location are shown. Synthetic seismograms containing P waves (a) and both P and S

waves (b) are shown. The source location in (a) is at the surface of the model at (x, y, z)= (2.0, 2.0, 0.0) km. The buried source location in (b) is at

(x, y, z)= (4.5, 4.5, 6.5) km. This source lies beneath the shaded plane in Fig. 7.

Test Site (Ward 1982) was obtained. The reflected energies in
MODELLING OF FIELD DATA

these data were previously analysed by Wen & McMechan
(1984); the current project was confined to modelling of theTo illustrate the use of the geometrical 3-D modelling

algorithm, a data set recorded at Rainier Mesa at the Nevada transmitted (first-arrival) branch.
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The lithological stratigraphic sequences in the study area

are a welded tuff layer overlying non-welded tuffs (Fig. 9a).
From studies of the area (Gibbons et al. 1963) we know that
the main reflector is a Palaeozoic dolomite that is overlain by

the Piapi Canyon and Indian Trail formations, which are
composed of a variety of tuffs (Fig. 9b). Since a detailed
geological cross-section is available, an r.m.s. velocity for the

tuffs can be fairly accurately estimated from the known depths
and the observed traveltimes. The survey geometry (Fig. 10)
consists of 17 vibrator locations on the Earth’s surface; for

each of these, the signal was recorded by 24 recording stations
located in a tunnel approximately 457 m beneath the surface.
Each station had six 4.5 Hz vertical-component geophones

attached to the wall of the tunnel. Thus the recording geometry,
as well as the structure, was 3-D. A preliminary velocity

Figure 10. The survey geometry for the vibrator data collected at

Rainier Mesa, Nevada Test Site. 17 sources (three of which are

numbered) were at the Earth’s surface at the locations indicated by

the triangles. 24 recorders were placed underground in a tunnel, at the

locations indicated by the squares. The signal from each source was

recorded at each geophone. The velocity distribution within the project

area (Fig. 9) is defined at each grid point.

analysis, using a move-out and stacking process similar to that

used in reflection seismology, indicated local lateral-velocity
variations of 15 per cent (Table 1). We intended to obtain an

estimate of the spatial distribution of these variations by
modelling.

Table 1. Velocity estimation for Rainier Mesa, Nevada.

Source number Time (s) Velocity (km s−1 ) Amplitude

1 0.340 1.463 0.224E+16

2 0.344 1.493 0.294E+16

3 0.344 1.415 0.351E+16

4 0.344 1.404 0.402E+16

5 0.328 1.530 0.230E+16

6 0.328 1.443 0.128E+16

7 0.324 1.421 0.338E+16

8 0.320 1.540 0.298E+16

9 0.324 1.709 0.908E+16

10 0.332 1.577 0.105E+16

11 0.324 1.547 0.270E+16

12 0.332 1.566 0.284E+16
Figure 9. (a) The geology of the Rainier Mesa area of the Nevada 13 0.336 1.740 0.320E+16
Test Site. The location of the seismic survey is indicated by the shaded 14 0.340 1.613 0.325E+16
rectangle. The general shape of the mesa is shown by the dashed line 15 0.340 1.580 0.228E+16
(Wen & McMechan 1984). The corresponding geological cross-section 16 0.344 1.650 0.220E+16
A–A∞ is shown in (b). The patterns used to denote geological units are 17 0.352 1.670 0.207E+16
as in (a). The dotted line is the base of the welded tuffs.
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The modelling process included iterative ray tracing and velocity is not feasible except in certain simple situations.

Moreover, the S wave may be elliptically polarized. Choosingcomputation of synthetic seismograms, comparison of the
computed times and amplitudes with the field data, and a reasonable S-to-P energy ratio at the source and the correct

geometrical factor for the resolution of the net amplitudeadjustments of the model. The apparent source wavelet used

was derived directly from the data, by stacking over all the into vertical and horizontal components is also necessary for
modelling the amplitudes of S waves.move-out-corrected common-source profiles. The radiation

pattern for simulating a vertical force was adopted from Aki

& Richards (1980). Since the available data for the current
DISCUSSION AND CONCLUSIONS

3-D problem are minimal, only an acceptable fit to the field
observations can be expected, and an optimum solution cannot A geometrical ray theory for computation of synthetic seismo-

grams for 3-D velocity distributions has been implemented.be guaranteed. A similar problem would arise if a 3-D travel-
time inversion (cf. Aki & Lee 1976) using the least-squares The algorithm is based on traced rays and is a high-frequency

approximation. The proposed approach does not predict theapproach was attempted.

Fig. 11 illustrates three representative ray paths from each energy off the ends of caustics or cusps, as in Gaussian-beam
methods, but it compares favourably elsewhere for transmittedof three source points to all 24 recorders. Refraction of the

rays due to the velocity variations is visible. These ray paths energy. Reflection arrivals are not included in the current

implementation, although the compression and shear arrivalsare derived from the final velocity model and illustrate, in a
qualitative way, the portion of the model that is sampled. Only are included. The current approach for calculating reflection

and transmission coefficients is still included explicitly.the central part of the velocity distribution is well constrained.

Fig. 12 depicts representative recorded (vertical-component) data The algorithm excludes head waves and higher-order wave
phenomena, e.g. diffraction, and is an adequate approximationand the vertical and horizontal components of the synthetic

seismograms produced for the final 3-D velocity distribution. for most practical applications. Since this is a ray method, it

is most accurate when the velocity distribution is a smooth,Horizontal and vertical sections of the velocity distributions
are shown in Figs 13 and 14 respectively. By assuming a continuous function in three spatial coordinates. Although the

current algorithm is unable to solve the problem of infiniteconstant Poisson’s ratio, the decoupled transmitted S waves
can be modelled. Traveltimes of S waves are obtained from amplitudes predicted for caustics, the algorithm is stable and

applicable elsewhere. The approximation for computing thethe P-wave times, for both the vertical and the horizontal

components, by multiplying by 1.783. For display purposes, amplitude is advantageous in that the infinite amplitude pre-
dicted by classical asymptotic ray theory (ART) for head wavesthe amplitudes of the horizontal seismograms have been

multiplied by 1.5 relative to the vertical components. Similar at the critical distance is no longer a difficulty (McMechan &

Mooney 1980). Although amplitude and phase informationfits were obtained for all 17 sources with this velocity model.
The traveltimes of P waves are fitted to within approximately can be modelled, the proposed algorithm still does not give a

complete solution for interference, diffraction, absorption and0.008 s (two sampling points), and the amplitudes to within

approximately 15 per cent of those of the field data. By dispersion effects. Further development for the modelling of
reflected energy is necessary.comparing the synthetic S-wave traveltimes with those in the

field data, variable time shifts can be observed. This variation The ray equations allow us to calculate the traveltimes for

various refracted paths and the corresponding critical distancesin S-wave times indicates that Poisson’s ratio is not constant,
and hence the ray paths for S waves are not identical to those beyond which refracted waves still exist. In many instances,

the minimum-time path sought for a direct or refracted pathfor P waves. In three dimensions, S waves may have two

components, S1 and S2 for the anisotropic case, which are satisfying Snell’s law is determined by the derivative and the
take-off and azimuth angles. The convergence rate dependscoupled at structure interfaces. Thus, simple scalar multi-

plication to obtain the S-wave velocity from the P-wave on the complexity of the model and on the initial conditions.

Figure 11. Representative 3-D ray paths through the final velocity model. The paths are for the source locations 2, 10 and 17 shown in Fig. 10.

For each source location, there is one ray to each of the 24 underground recorders. Synthetic seismograms computed from these rays are shown

in Fig. 12.
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Figure 12. Field and synthetic seismograms containing both P and S waves. The left column contains the real vertical-component seismograms

for source points 2, 10 and 17. Synthetic vertical- and horizontal-component seismograms (computed from the rays in Fig. 11) are shown in the

centre and right columns respectively. The amplitudes of the horizontal seismograms are multiplied by l.5 relative to the vertical seismograms.

In the case of a smoothly varying velocity distribution (as minimum-traveltime ray path (Julian & Gubbins 1977). A

similar restriction can be encountered in a two-point ray-in Fig. 5), the results show that convergence is obtained in
fewer than 10 iterations. A receiver continuation strategy is tracing problem based on a three-point perturbation scheme

(Um & Thurber 1987).used when searching the ray path for neighbouring receiver
positions. For a complex model the traveltime may be multi- Our tests of the algorithm with different models show that

this procedure yields satisfactory results for 3-D smoothlyvalued. The multipath problem may be alleviated by redefining

the initial conditions by means of the azimuth a and take-off varying structures. It also considerably decreases the computer
time, compared to solving 19 equations simultaneously (sevenangle b (i.e. the ray group), or by shooting a bundle of rays

and finding the correct one by interpolation. An alternative for ray tracing and 12 for geometrical spreading). Since two

additional rays must be traced for the geometrical-spreadingapproach may be to use the ‘Fermat ray’ instead of the ‘Snell
ray’, as proposed by Waltham (l988), or a point-to-curve ray- calculation, solving 7×3 differential equations is necessary.

However, the number of arithmetic operations required fortracing method, discussed by Hanyga (1996). The present

algorithm may be inefficient for yielding a ray corresponding eqs (A3) is significantly less than for the dynamic ray-tracing
algorithm given in Appendix B [see expressions for Ẇ7–Ẇ18 into the global minimum and may thus fall into a nearby local

minimum. However, any converging solution can produce a eqs (B3)]. Parallel implementation of the proposed algorithm
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Figure 13. Representative horizontal sections through the 3-D Nevada Test Site velocity model. Slice 2 is at 96 m depth; 3, 152 m, 4, 343 m; and

5, 400 m. The numbers on the grey scale denote velocities in km s−1.

and developing a parallel code for solving partial differential insufficient sampling of the velocity field by the ray paths. A
equations, as was designed for the dynamic ray equations in similar problem would arise if a 3-D traveltime inversion was
eqs (B3), on a massively-parallel-processor computer will attempted using the least-squares method (cf. Aki & Lee 1976).
improve both schemes accurately and efficiently (cf. Kao &
Chen 1996).
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Figure 14. Representative vertical sections through the 3-D Nevada Test Site velocity model. The number at the lower right corner of each section

denotes the corresponding (fixed-y) position of the section in Fig. 10. The numbers on the grey scale denote velocities in km s−1.
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equation, which is a second-order ordinary differential equation

(ODE) governing the ray path:

d

ds A1

n

dr
dsB=VA1

nB , (A1)

where dr=[x(s), y(s), z (s)] and n(x, y, z) is the local wave
velocity. The velocity is a function of the spatial position

vector r and s is an independent variable representing the path
length along the ray. The term dr/ds is the tangent vector (with
unit length) and V is the gradient operator. The ray equations

may also be derived from Fermat’s principle of minimum (or Figure B1. Ray coordinates.
maximum) time.

Any system of second-order ordinary differential equations

can be reduced to a system of first-order equations by defining
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The new quantity ∂W2/∂a also satisfies a differential equation,dP

ds
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nB , (A2)
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with six components. Eq. (A2) is equivalent to the original

second-order system with three components. To keep track of (B2)
the traveltime t(s) we may add a seventh equation dt/ds=1/n.

Equations such as eqs (Bl) and (B2) may be obtained for allSo, in the Cartesian coordinate system, eq. (A1) can be decom-
six combinations of a or b with x, y or z, so that we may addposed into seven ODEs by setting U=1/n, P

x
=U(dx/ds)=W2 , 12 equations to the system in eqs (A3) to yield a new systemP

z
=U(dz/ds)=W6 , x=W1 , y=W3 , z=W5 , t=W7 and P=

of 19 first-order ordinary differential equations. If we define(W2 , W4 , W6 ), where (W2 , W4 , W6 ) are the x, y and z components
the set of dependent variables W1 , W2 , W3 , … , W19 , the systemof the slowness vector, such that eq. (A2) becomes
and corresponding definitions are
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6
=U

z
,

W
7
=t , Ẇ
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,The dot denotes differentiation with respect to the path length

s. These seven equations are solved simultaneously for Ẇ1–Ẇ7
by a Runge–Kutta–Felberg (4, 5) algorithm.
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APPENDIX B: THE 3-D DYNAMIC RAY
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TRACING

The dynamic ray-tracing algorithm is an alternative approach
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media. A straightforward approach to describe the initial
direction of a ray is to specify the azimuth (a) and take-off (b)
angles (Fig. B1). These are defined such that at the initial point W
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(source location) ẋ=cos a sin b, ẏ=sin a sin b and ż=cos b.
As the first step in obtaining the derivatives required to speed
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equations for the quantities ∂x(s)/∂a, ∂y(s)/∂a, ∂z(s)/∂a and
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example, by applying the chain rule (d/ds)(∂x/∂a), the equation
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system of equations, corresponding to a ray starting at the
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