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Amplification of gravity and Rayleigh waves in a layered water-soil model
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The coupled seismic to gravitational surface wave fields are analyzed in a liquid layer lying on the gravitating
elastic, low-rigidity half-space. Solution is obtained within the framework of the normal mode formalism applied to
the flat ocean-solid Earth model. From the theory of propagation of coupled surface waves (Rayleigh and Love) in
layered media, we find the individual multipliers that determine the surface wave spectrum over the entire frequency
range. Spectra of excitation functions are investigated for dip-slip point source in the half-space. Main results can
be summarized as follows. When the half-space is filled with sediments, dip-slip excitation functions of gravity and
Rayleigh waves are one order of magnitude larger than for the half-space composed of hard rocks. Including gravity
in the elastic medium essentially changes the character of gravity wave spectrum, leading to an appearance of the
third maximum. At the deepening of the source amplitude of this maximum increases. Theoretical marigrams show
that including gravity in the half-space also increases period of the gravity wave excited by deep sources by a factor
of two, up to 10 minutes. At the same time, presence of gravity force in the half-space has no effect on the spectrum
of the Rayleigh wave.

1. Introduction
Considerable effort has been taken to develop both the

analytical description of the propagation process of long pe-
riod gravity (tsunami) and ocean Rayleigh waves for the case
of uniform depth (Yamashita and Sato, 1974; Ward, 1980;
Comer, 1984a, b; Okal, 1988; et al.) and the numerical one
for actual bathymetry (e.g. Hwang, 1972; Satake, 1985).

Yamashita and Sato (1974, 1976), using the fully cou-
pled ocean-solid Earth model, analyzed the influence of a
number of focal parameters-dip-angle, fault length and fo-
cal depth and the rise time of the source time function- on
the tsunami (long period gravity wave) and Rayleigh waves.
Earthquake source was modeled by the point dislocation and
a finite-moving source. Numerical computations have been
performed for the dip-slip source model, because large sub-
marine earthquakes near Japan are of this type. Their results
can be summarized as follows. In the case of tsunami wave,
such parameters as dip-angle, fault length and depth all play
an important role in generation process. The maximum am-
plitudes in the wave trains at azimuths ϕ = 90◦ and ϕ = 270◦

become large for large dip-angles. In the case of ϕ = 0◦, the
maximum amplitude is the largest when dip-angle is 45◦. The
fault length also significantly affects the directivity. When
the ratio- of ‘fault width to its length increases, the direc-
tivity at the azimuth ϕ = 90◦ and ϕ = 270◦ become very
strong. Velocity of rupture propagation and rise time do
not affect much the tsunami amplitude and waveform. In
the case of Rayleigh wave, the spectral amplitude decreases
monotonously, with as the increase of focal depth. The dip-
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angle factor has the entirely opposite effect compared to the
tsunami wave. The spectral amplitude of Rayleigh wave
predominates for smaller dip-angle. The rise time parame-
ter also affects strongly the Rayleigh wave, which become
essentially suppressed-as rise time increases.

Ward (1980) considered the tsunami generation problem
in the context of a spherically symmetric self-gravitating and
elastic ocean-Earth model using the normal mode formalism.
He formulated and solved full linearized equations of motion
in a manner similar to that originally applied to the Earth’s
free oscillations. Using moment tensor representation for
both point and line seismic source he has derived expressions
for tsunami wave displacement in near- and far-field zones.

Consequently Comer (1984a, b) introduced a solution for
the tsunami mode excitation in the flat Earth by a point source.
He emphasized that the excitation problem in the flat Earth
differs substantially from the corresponding problem for the
spherical Earth. There is a continuum of frequencies and
wavenumbers for the flat Earth but frequencies and angular
orders are discrete on the spherical Earth. Also, the normal
modes of a finite body form a complete basis for the small
oscillations of the body but those of an infinite body, like the
flat Earth, do not. In common with Ward, Comer assumed the
ocean to be non-viscid and only considered linearized equa-
tions of motion and boundary conditions. Alike the earlier
authors investigations (Pod”yapol’sky, 1968, 1970; Alexeev
and Gusiakov, 1976) he has shown that far-field tsunami in
the fully coupled ocean-solid Earth model depend strongly
on the source depth, duration, moment and mechanism.

Okal’s study (1988) was largely based on Ward formalism
considering tsunami wave as the superposition of the free
oscillations of an elastic self-gravitating Earth, excited by a
seismic sources. Extending the range of source depths to 250

579



580 T. NOVIKOVA et al.: AMPLIFICATION OF GRAVITY AND RAYLEIGH WAVES

km he showed that this parameter plays only a limited role
in controlling the tsunami amplitude. More important are
the effects of directivity due to rupture propagation along the
fault and the possibility of enhanced tsunami excitation in an
elastically weak material. Analyzing tsunami and Rayleigh
wave generation by non-double couple sources, he found, in
particular, that a landslide involving weak sediments could
result in very large tsunami.

In the description of tsunami and Rayleigh waves prop-
agation in most models, discussed above, the gravity force
was included only in the liquid layer. Since in the present
study we take gravity into account also in the solid Earth, we
briefly review the previous works in this direction.

Surface wave propagation in the elastic medium under
the influence of gravity was considered by a number of au-
thors (Matuzawa, 1925; Gilbert, 1967; Lomnitz, 1970, 1990,
1991; De and Sengupta, 1976). Gilbert (1967) described
a gravitationally perturbed Rayleigh wave in a low-rigidity
medium which forms a linear continuum ranging from a solid
rocks to water. In this approach everything is attributed to the
variation of a single parameter- the rigidity. Gilbert has made
energy estimations for surface waves and showed that in a low
rigidity medium such as unconsolidated sediments the energy
of gravity is comparable with the shear strain energy. In the
case of Rayleigh wave propagated in the non-gravitating half-
space the S is more dominant pulse. In the present of gravity,
as β decreases, the S pulse becomes insignificant, and the P
pulse becomes dispersive and approaches the behavior of the
classical gravity wave.

Lomnitz (1990), analyzing the behavior of sediments dur-
ing the Mexico 1985 earthquake, has supposed that a non-
linear mechanism could make the rheology of the Mexico
City soft clay nearer to a fluid than to a solid. At large
amplitudes, when the stress-strain relation becomes strongly
nonlinear sediments may liquefy, and in such conditions the
gravity wave propagates as in a liquid. It is worth mentioning
here that originally Matuzawa (1925) proposed the idea of
existence and propagation of waves of hydrodynamic origin
in soils. Based on the study of Tokyo 1923 earthquake, he
speculated that sediments could behave like solids at high
frequencies and like fluids at low frequencies.

Dealing with gravity wave propagation in the system con-
sisting of the liquid layer and elastic half-space it is possible
to neglect the gravity in an elastic medium, since it is small in
comparison with the elastic forces. General effect of gravity
on the wave propagation in such a system is determined by
gravity effect in the liquid. When the ocean bottom consists
of rigid rocks the above assumption is reasonable. Although
in this case too, including the gravity force in the motion
equations of the elastic substratum, changes slightly the dis-
persion curve at the 10000 seconds period (Pod”yapol’sky,
1968, 1970; Alexeev and Gusiakov, 1974). In the present
work, however, we focus on the wave excitation by seismic
sources located in low-rigidity media. Therefore it is appro-
priate not to omit gravity from the description of this medium,
since its effects can be evaluated to some extent even within
the framework of linear theory.

Present study is focused on the developing an analytical
model of gravity and Rayleigh waves excitation by a realistic
earthquake source located in the gravitating low-rigidity half-

space. We do not deal in detail with the effects of focal
parameters on the gravity and Rayleigh wave generation,
because it was already done in previous studies mentioned
above. It is worth noting that in the case of gravity wave we
analyze the wave spectrum in the whole range of frequencies,
not limited by its long-period component (tsunami). We will
describe the seismic response in function of source location
in the half-space and compare the results obtained for a liquid
layer and a gravitating half-space model with a liquid layer
plus a non-gravitating half-space.

2. Statement of the Problem
Consider gravity and Rayleigh waves in a compressible

liquid layer of uniform thickness H over a half-space. Grav-
ity acts in both media. We assume: (1) both media are ho-
mogeneous; (2) in the solid medium stress and deformation
are related through Hooke’s law and in the liquid pressure is
proportional to the degree of compression; (3) deformations
are small and displacements in the liquid are small compared
to the liquid layer thickness and characteristic wavelengths.
The latter condition allows us to neglect the distinction be-
tween Eulerian and Lagrangian variables in the equations of
motion (Pod”yapol’sky, 1968, 1970; Comer, 1984a).

Linear approximation is used to formulate the equations of
motion. This means that we neglect the variation of the dis-
placement field on distances comparable with displacement.
We also neglect the displacements of the boundary, since
these displacements are very small compare to the character-
istic wavelengths.

Based on the above approximation and on the main pos-
tulates of the fluid dynamics (Landau and Lifschitz, 1980)
the linearized equations for the dynamic displacement field
in liquid and in elastic medium will be respectively (after
Pod”yapol’sky, 1968, 1970):

c2
f ∇divu1 − gezdivu1 = ∂u1

∂t2
0 < z < H (1)

a2∇divu2 − b2∇ × (∇ × u2)

− gezdivu2 = ∂2u2

∂t2
z > H, (2)

Boundary conditions at the ocean surface (z = 0) and the
bottom (z = H ) are:

c2
f divu − gW

∣∣
z=0= 0, (3)

W1(H) = W2(H), (4)

p f

[
c2

f divu − gW1

∣∣
z=H

]
= ρ

[(
a2 − 2b2

)
divu

+ 2b2 ∂W2

∂z
− gW2

∣∣
z=H

]

µ

(
∂W2

∂x
+ ∂U2

∂z

) ∣∣∣∣
z=H

= 0,

µ

(
∂V2

∂z
+ ∂W2

∂y

) ∣∣∣∣
z=H

= 0, (5)

At infinity the displacement vanishes:

u → 0 at z → 0. (6)
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Here c f is the velocity of the acoustic wave in the liquid
layer, ρ f is the density of the liquid, H is the thickness of
the liquid layer, λ and µ are the Lame coefficients in the
elastic half-space, ρ is the density of the elastic medium, a
and b are the velocities of P- and S-waves, ui = (Ui , 0, Wi )

is the displacement vector (i = 1 liquid layer, i = 2 elastic
half-space), g is gravity, is the angular frequency, and z is
the vertical distance from the initial (undisturbed) position
of the free surface (positive downwards).

3. Solution
The solution of Eqs. (1) and (2) may be written in the form

of a stationary plane wave propagating along the x axis

ui (x, z, ω, t) = vi (z, ω) exp [iω(t − x/c)] . (7)

Substituting (7) into Eqs. (1) and (2) and introducing the
boundary condition at z → ∞, the wave amplitudes as a
function of depth are found as

U1(z, ω) = ic2
f

ωc

[−B exp(−η2z/c f )

+ C exp(−η1z/c f )
]
, (8)

W1(z, ω) = − c f

ω2

[−η1 B exp(−η2z/c f )

+ η2C exp(−η1z/c f )
]
, (9)

where, for the liquid layer,

η1 = −ωγ − g/2c f (10)

η2 = −ωγ − g/2c f (11)

γ 2 = c2
f

c
− 1 + g2

4c2
f ω

2
, (12)

and for the half-space,

U2(z, ω) = ia2

ωc
D exp(−ωα(z − H)/a)

− ibβ

ω
F exp(−ωβ(z − H)/b), (13)

W2(z, ω) = aα

ω

(
1 + g

2ωαa

)

· D exp

((
− ωα + g

2a

)
(z − H) /a

)

− b2

ωc
F exp(−ωβ(z − H)/b),

(14)

where

α2 = a2/c2 − 1 + g2

4a2ω2

and
β2 = b2/c2 − 1.

Equations (3) to (14) yield a set of four homogeneous
equations in four unknown coefficients, namely B, C, D and
F, which has a non-trivial solution when the determinant is
zero.

The dispersion equation is obtained as follows:

m

[
− γ cosh

(
ωγ H/c f

)

+ g

2c f ω

(
2c2

f

c2
− 1

)
sinh

(
ωγ H/c f

) ]

·
[

− a2

(
1 − 2b2

c2
− g2

2ω2a2

)
+ 4b3aαβ/c2

]

− c f

(
aα − gβ2

2ω

)

·
[

gγ

c f ω
cosh(ωγ H/c f ) −

(
1 − g2

2c2
f ω

2

)

· sinh
(
ωγ H/c f

) − gγ

c f ω
exp(−gH/2c2

f )

]

− gaα

ω2

(
1 − c2

f

c2

)

·
[
ωγ exp

(−gH/2c2
f

) − ωγ cosh
(
ωγ H/c f

)

− g

2c f

(
2c2

f

c2
− 1

)
sinh

(
ωγ H/c f

) ]
= 0,

(15)

where
m = ρ

ρ f
.

We follow the approach of surface-wave theory. Consider
the displacement of a stationary surface wave excited by
a point source in a homogeneous half-space (Aki, 1980;
Keilis-Borok, 1989):

u(r, ϕ, ω, t) = exp(−iπ/4)√
8π

exp(iω(t − r/c))√
ω r/c

· U(z, ω)√
cu I0

Q(h, ϕ, ω)√
cu I0

; (16)

for a constant thickness of the liquid layer, or

u(r, ϕ, ω, t) = exp(−iπ/4)√
8π

·
exp

(
iω

(
t −

∫ N

M

dx

c(ω, x)

))
√

ωJ (x)/c

·
(

U(z, ω)√
cu I0

)
N

(
Q(h, ω)√

cu I0

)
M

, (17)

for a variable thickness of the liquid layer, where U(z, ω) =
U (z, ω)er + W (z, ω)ez , Q(h, ϕ, ω) = mrs(ω)Brs(h, ϕ, ω)

is the excitation function, mrs(ω) is the spectrum of the seis-
mic moment tensor, Brs(h, ϕ, ω) is a tensor which can be
expressed via the eigenfunctions U (z, ω) and W (z, ω) and
their derivatives and which depends on the axis orientation
of the source,

I0 =
∫ ∞

0
ρ

[
U 2(z, ω) + W 2(z, ω)

]
dz
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Table 1.

Layer thickness

Media density [g/cm3] Wave velocities [km/s]
(H -for liquid) [km.];

depth of source location
(h-for half-space) [km.]

Model I

Liquid layer 1 Acoustic wave 1.45 H = 4
Half-space 2.03 P-wave 2.0 h = 10–30

S-wave 1.15

Model II

Liquid layer 1 Acoustic wave 1.45 H = 4
Half-space 2.5 P-wave 3.9 h = 10–30

S-wave 2.3

Model III

Liquid layer 1 Acoustic wave 1.45 H = 4
Half-space 3.1 P-wave 7.15 h = 10–30

S-wave 4.1

Fig. 1. The dependence of |q(h, ω, ϕ)| on period for the dip-slip source lo-
cated a) in non-gravitating half-space, b) in gravitating half-space. Num-
bers at the curves indicate the source depth in half-space.

Fig. 2. The dependence of |q(h, ω, ϕ)| with period for dip-slip source lo-
cated a) in non-gravitating half-space, b) in gravitating half-space. Num-
bers at the curves indicate the source depth in half-space.
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is the energy integral, u is the group velocity and J (x) is the
geometrical divergence in the x-y plane.

In Eqs. (16) and (17), the second term describes the effect
of geometrical divergence of the energy flow on the wave
propagation. The third term depends on the depth of the
receiver, and the fourth term depends on depth, focal mech-
anism and radiation spectrum in the half-space.

As we shall see, the presence of gravity in the half-space
leads to new properties of the gravity wave spectrum. In the
following we consider the case of surface waves excited by
a dip-slip point source.

4. Dip-Slip Source
Let the fault plane be orthogonal to the x-axis and let

displacement be vertical. Then the seismic moment tensor
has two non-zero components:

mxz = mzx = M0 F(ω), (18)

where M0 is the seismic moment and F(ω) is the seismic
moment spectrum. The corresponding components of tensor
B are

Fig. 3. The dependence of |q(h, ω, ϕ)| with period for dip-slip source lo-
cated a) in non-gravitating half-space, b) in gravitating half-space. Num-
bers at the curves indicate the source depth in half-space.

Bxz = Bzx = i cos ϕ

2

(
−W2 + dU2

dz

)
. (19)

Thus

Q(h, ω, ϕ) = i M0 cos ϕ

(
−ξW2 + dU2

dz

)
F(ω), (20)

q(h, ω, ϕ) =
i cos ϕ

[
−ξW2(h, ω) + dU2(z, ω)

dz

∣∣∣∣
z=h

]
√

cu I0
,

(21)
where ξ = ω/c is the wave number.

To estimate the source radiation function, some value of
the seismic moment M0 and its spectrum F(ω) must be as-
sumed. We assume values of the radiation function up to the
factor M0 and for that azimuth along which seismic radiation
is maximal. Thus

F(ω) = 1

iω(iωτ0 + 1)
, (22)

where τ0 is the rise time.

Fig. 4. A comparison of theoretical marigrams of gravity wave from the
dip-slip source for model I a)- with non-gravitating half-space, b)- with
gravitating half-space. The right numbers at the curves indicate the source
depth in half-space.



584 T. NOVIKOVA et al.: AMPLIFICATION OF GRAVITY AND RAYLEIGH WAVES

Fig. 5. A comparison of theoretical marigrams of gravity wave from the
dip-slip source for model III a)- with non-gravitating half-space, b)- with
gravitating half-space. The right numbers at the curves indicate the source
depth in half-space.

5. Numerical Results
The parameters of our model are shown in Table 1 (Nafe

and Drake, 1963).
We focused on the influence of gravitating sediments on

excitation of gravity and Rayleigh waves. Although in real
Earth thickness of ocean sediments seldom exceeds a few
kilometers (Mooney et al., 1998), for our numerical experi-
ment we used structures with thick sedimentary mass like
deep-sea trenches (Yoshii et al., 1970; Westbrook et al.,
1973), and we vary the source location from shallow to deep.
In spite of that we are using real paremeters of the ocean-
Earth structure, proposed model is still a theoretical one,
whose purpose is to explore some physical aspects of the
role of sediments in the excitation of gravity and Rayleigh
waves.
5.1 Case of gravity wave

As shown previously (Novikova, 1997), compressibility of
the liquid leads to the appearance of two maxima (Figs. 1(a)–
3(a)) in the spectrum of gravity waves, namely a high-
frequency maximum at periods of 100–200 s and a low-
frequency maximum around at 1000 s. For all liquid half-
space models (Table 1) in the 10–30 km depth interval, the
amplitude of the high-frequency maximum is larger than that
of the low frequency maximum. When the half-space is com-
posed of sediments excitation function of gravity wave is one

Fig. 6. The dependence of |q(h, ω, ϕ)| on period for the dip-slip source
located a) in gravitating half space model III , b) in gravitating half-space
model I. Results without gravitational force are identical. Numbers at
the curves indicate the source depth in half-space.

order of magnitude larger compared with that in hard rock
half-space (Figs. 1(a)–3(a)). Theoretical marigrams (vertical
component) of gravity wave, calculated by integrating for-
mula (16) at the epicentral distance of 1000 km, prove this as
well (Figs. 4(a) and 5(a)). We assume that the seismic mo-
ment M0 for the source model is 6×1021Nm, corresponding
roughly to an earthquake of magnitude 8.5.

By including the action of gravity in the half-space charac-
ter of the excitation function spectrum changes. Third maxi-
mum appears (Figs. 1(b)–3(b)) and at the deepening of source
its amplitude increases. Theoretical marigrams (Figs. 4(b)
and 5(b)) show that including gravity in the half-space in-
creases period of the gravity wave excited by deep sources
by a factor of two, up to 10 minutes.

One possible explanation of this third maximum is that
including gravity in the elastic medium results in the addi-
tional (gravity) root in the dispersion equation. This root cor-
responds to a gravity wave propagating at the liquid-elastic
medium interface (Gusiakov, 1972) and cases the change in
excitation spectrum.
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Fig. 7. A comparison of theoretical marigrams of Rayleigh wave from the
dip-slip source a) for model III, b) for model II with gravitating half-space.
Results without gravitational force are identical. The right numbers at
the curves indicate the source depth in half-space.

5.2 Case of Rayleigh wave
Figures 6 and 7 demonstrate that low-rigidity media also

amplify the excitation and propagation of Rayleigh waves.
At the deepening of source Rayleigh wave amplitude de-

creases, similar to the case of gravity wave. Including gravity
in the half-space has no effect on the Raylegh wave (exci-
tation function curves and theoretical marigrams with and
without gravity coincide). It can be explained as follows. In
case of Rayleigh wave the restoring force is elastic, not grav-
ity. Gilbert (1967) showed that influence of gravity acting
in an elastic medium, on a surface wave is important only if
the medium is filled with soft sediments with wave velocities
b < 100 m/s. In our model, however, s-wave velocities vary
from 1.1 to 4.1 km/s, i.e. our model medium is rigid enough
to suppress action of gravity on surface wave.

6. Conclusions
Excitation and propagation of gravity and Rayleigh waves

are treated in the frame of model considering them as surface
waves of the coupled type in a liquid layer overlying the

gravitating half-space filled with sediments. Normal mode
formalism was applied to calculate far-field displacement of
surface waves generated by dip-slip point source located at
different depths in the solid Earth underneath the ocean.

Using the liquid-solid model with different parameters of
half-space we found that low-rigidity medium may be seen
as an amplifier for both gravity and Rayleigh waves.

Including gravity in the half-space changes the character
of excitation spectrum of gravity wave. The difference is
more obvious for the gravity wave excited by a deep source
in the weak media. In such conditions gravity wave becomes
more long-period.

Proposed model is the theoretical one aimed to study the
influence of gravitating sediments on the wave excitation.
Consequently, for future investigations, it is assumed to use
a more realistic structure with layered ocean crust. In partic-
ular, such model will be important for the study of Rayleigh
waves that depend considerably on the layered structure (es-
pecially in the 1–10 seconds period range).

In further study of gravity waves, the results of the present
work will be generalized for the case of “tsunami-earthquake”
events, using a more realistic model of a finite size seismic
source. Recent investigations (Houston, 1999; Bilek and
Lay, 1999) suggested that some earthquakes rupture slowly
because of the presence of shallow, unconsolidated sedi-
ments. The process of gravity wave excitation by a slow
rupture on a shallow fault may be relevant, as slow rupture
can generate large low-frequency gravity waves which take
the form of tsunami waves at the ocean surface.
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