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Abstract

Based on both the de"nition and experimental data, we propose that the inverse of the GruK neisen parameter � is
directly related to the fractal dimension. Scaling behavior of vibrational frequency versus volume extends over large
distances via constructing the relation of the GruK neisen parameter to the interatomic force constant for some alkali
halides with an NaCl structure. In particular, these alkali halides should possess a universal class with �"
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Derivations and applications of GruK neisen para-
meter rest heavily on the fundamentals of statist-
ical, quantum and solid-state physical theory. The
necessary simplicity of the real atomic systems for
which the theory applies and the incredible com-
plexity of its highly theoretical basis have severely
limited this parameter's practicality for most
substances [1]. However, as it appears in many
valuable equations of state for materials at high
temperatures and pressures and as its range of
numerical values is much narrower than all other
thermodynamic quantities, GruK neisen parameter
persists to be fashionable in the geophysical litera-
tures [2}6].

Although Quareni and Mulargia [4] compiled
several formulations of the GruK neisen parameter
for the purpose to derive thermodynamic proper-
ties of the Earth's interior, we will concentrate the
present study on the mode GruK neisen parameter.
By di!erentiating the Helmholtz free energy with
respect to the volume < at constant temperature,
GruK neisen introduced a dimensionless quantity, the
modeGruK neisen parameter !(R ln�

�
/R ln<), in an

equation of state (EOS) [1]. In the de"nition
�

�
represents the frequency for a given normal

mode of vibration in a crystal lattice. Assuming the
frequencies of all the vibration modes are the same,
Mie}GruK neisen EOS is obtained. Thus, all mode
GruK neisen parameters can be replaced with a single
value which is often denoted by

�"!

R ln �
R ln < . (1)
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It is noted that since the vibrational frequency is
inversely proportional to the wavelength � when
the wave velocity is constant, � could be rewritten
in the following form:

<"A����, (2)

where A is a constant of proportionality. Eq. (2)
shows a power-law distribution of crystal vibra-
tions. Mandelbrot [7] extended the general rule
measure(length)&(length)� from conventional
Euclidean dimension, for which the exponent D is
strictly an integer (e.g. the volume is a cubic
measure and proportional to the cube of length), to
the fractal dimension, for which D is not necessary
an integer. There has developed a growing interest
in the fractal properties of natural objects in the last
two decades. Many objects in nature have a self-
similar fractal spatial structure implying that sys-
tems are correlated over large distances. Eq. (2)
obviously suggests that the scaling exponent 1/�
behaves like a fractal dimension.
The log}log plot of �(<) versus < usually dis-

plays a linear relationship between log� and log<
[6], thus showing power-law scaling. The slope
of a best-"tting line to the data points is the
GruK neisen parameter, which might have a relation
with the fractal dimension. There exists many ex-
perimental data [6,8}10], revealing the validity of
scaling behavior in lattice vibrations during com-
pression for most materials. However, only a small
percentage of volume, in general, can be compacted
in the high-pressure experiments. The scale invari-
ance of fractal properties usually extends over sev-
eral orders of magnitude in length. On the other
hand, the fact that � remains a constant over large
amounts of compression seems unclear. This is
a plausible reason for the fact that so far � has never
been considered as the fractal dimension in any
literature. In the following, based on the treatment
of Born and Huang [1], we relate available values
of � to the interatomic force constants [11] for the
alkali halides of NaCl structure. So we may extend
the e!ect of the change in volume upon the vibra-
ting frequency to test the validity of scaling behav-
ior in lattice vibrations over large length scales.
A typical approach to study the lattice vibrations

is the application of a linear harmonic chain of
oscillators with nearest-neighboring interactions

[1]. The vibration of atoms in the chain is governed
by the equation of motion

m
�

d�u
�

dt�
"k

�����
u
���

#k
�����

u
���

!(k
�����

#k
�����

)u
�
, (3)

where u
�
is the displacement of the jth atom with

mass m
�

from its equilibrium position; and
k
�����

and k
�����

are the strengths of the couplings
between two neighboring atoms, in other words,
the interatomic force constants. In the case of
NaCl-type structure, we replace m

�
by m for the

cation and M for the anion, and because of the
symmetry it is reasonable to assume all the
strengths of the couplings between neighboring
atoms have the same value, that is k

�����
"

k
�����

"C. Provided that the time dependence in
Eq. (3) behaves like u

�
Jexp(!i�t), the stationary

equation of motion is obtained. Upon diagonaliz-
ation [1], one may calculate the eigenfrequencies
� of the normal mode

��"C�
m#M

mM ��1$�1!

4mM

(m#M)�
sin�(aq)�,

(4)

where a and q represent the spacing of two nearest
atoms in equilibrium state and the wavelength of
lattice vibrations, respectively. Putting the periodic
boundary condition in the linear chain [1], only the
interatomic force constant C in Eq. (4) depends on
the volume/length of the chain, and consequently
GruK neisen parameter is

�"!

R ln �
R ln a

"!

R ln C���

R ln a
"!

1

2

R ln C

R ln a
. (5)

It is remarkable that Eq. (5) reveals the mechanical
meaning of GruK neisen parameter, and Eq. (2) shows
its geometric meaning. This implies that a geomet-
ric parameter can re#ect mechanical behavior.
Grimvall and Guillermet [11] reported a rela-

tionship between the interatomic force constant
C and the volume< for some alkali halides (Fig. 1).
The dashed line shown in Fig. 1, with a slope of
!0.83, gives a crude description of C versus < for
some alkali halides of NaCl structure. With<&a�,
the slope of !0.83 in Fig. 1 corresponds to
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Fig. 1. A logarithmic plot of the average interatomic force
constant C versus volume < for some alkali halides with NaCl
structure (after Grimvall and Guillermet [11]). The dashed line
corresponds to C< ��	�"constant. Several short solid lines,
corresponding to � listed in Table 1, represent 10% of compres-
sion in volume for these alkali halides.

Table 1
GruK neisen parameters � (upper subcells) and slopes (lower sub-
cells) of interatomic force constant C versus volume < for some
alkali halides with NaCl structure. � was transferred to the slope
of logC versus log< via �"!�

�
R ln C/R ln <. The standard

deviations in parentheses are expressed in units of the last digit

Ref. [1] Ref. [12] Ref. [13] Ref. [14] Ref. [15]

NaF 1.57 2.02 1.62 (60) 1.77 1.37
!1.05 !1.35 !1.08 !1.18 !0.91

NaCl 1.43 1.12 1.17 (195) 1.62
!0.95 !0.75 !0.78 !1.08

NaBr 1.55 2.07 (55) 1.27
!1.03 !1.38 !0.85

NaI 1.59 1.22 2.02 (25) 1.27
!1.06 !0.81 !1.35 !0.85

KF 1.48 1.87
!0.99 !1.25

KCl 1.34 1.67
!0.89 !1.11

KBr 1.43
!0.95

KI 1.58
!1.05

�"1.245, based on Eq. (5). The short solid lines,
corresponding to several given values of � shown in
Table 1, indicate 10% of compression in volume
for these alkali halides. As mentioned in many
high-pressure studies [6,8}10], constant � was con-
sidered during the small amounts of compression.
A remarkable feature in Fig. 1 is that the values of
GruK neisen parameter for these alkali halides with
NaCl structure are almost around 1.245 over large
volume scales. The scaling property for a certain
material during volume compression indicates
short-range self-similarity, and that for di!erent
alkali halides demonstrates long-range self-
similarity.
Up to the present, we have realized that accord-

ing to both the de"nition and experimental results,
the inverse of the GruK neisen parameter behaves like
the fractal dimension in crystals. Such a fractal
dimension describes the scaling of lattice thermal
vibrations and this standpoint provides another
important content of GruK neisen parameter. A frac-
tal energy spectrum in quasiperiodic structures re-
cently raised a great number of theoretical and

experimental works [16}19]. Like this study, these
works remarkably show intrinsic fractal properties
of crystals.
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