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S U M M A R Y
Observations and theoretical considerations have cast doubt on the suggestion that volcanic
tremor source processes may be modelled by a linear oscillator that is set into resonance
by a sustained disturbance. Volcanic tremor signals that accompanied the 1996 Vatnajökull
subglacial eruption, central Iceland, have been analysed using methods from the discipline of
non-linear dynamics in order to investigate the possibility that they originated from a non-
linear source. The volcano-seismic phenomena associated with the eruption were recorded by
a permanent network equipped with broad-band seismometers (HOTSPOT) using a sampling
rate of 20 samples s−1. The eruption was preceded by increased seismic activity for a period of
2 days, which also included a large earthquake with a moment magnitude of 5.6. The tremor
during the first 2 days of the eruption has a high signal-to-noise ratio at the nearest station to
the eruption site and starts as a continuous signal, later evolving to low-amplitude background
tremor interrupted by high-amplitude, cigar-shaped bursts having an average duration of 250 s.
The phase space, which describes the evolution of the behaviour of a non-linear system,
was reconstructed from the original tremor seismograms using the delay embedding theorem
suggested by Takens. The delay time used for the reconstruction was selected after examining
the autocorrelation function, which showed a first zero crossing at a timelag of 4 samples and the
average mutual information that showed no minimum, indicating that the tremor process may
have been undersampled. Based also on phase space portraits for different delay times, a delay
time of one sample interval (0.05 s) was used. The sufficient embedding dimension for phase
space reconstruction was selected by applying the false nearest-neighbours method, which
revealed complete unfolding of the tremor attractor at dimensions 7–8, implying upper bounds
of its fractal dimension in the range 3.5–4.0. The phase space prediction errors of different
segments of the tremor time-series were compared in order to check whether the attractor
dynamics change substantially with time. It was found that for continuous tremor there was
almost no dynamic variation, in contrast to the background tremor and the superposed bursts
that gave a maximum prediction error when the former was used to predict the latter. This
difference in dynamics also had an effect on their spectra: the amplitude spectrum of a burst or
continuous tremor has a much sharper decay at high frequencies than that of the background
tremor. A possible physical mechanism that may explain these observed characteristics involves
turbulent slug flow of magma in a narrow cylindrical conduit, generating the different dynamic
regimes as the Reynolds number varies.
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I N T R O D U C T I O N A N D B A C K G R O U N D

The identification of a source mechanism that can adequately ex-
plain the excitation of volcanic tremor and its observed character-
istics remains one of the outstanding problems in the discipline of
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volcanic seismology. Most source models that have been proposed
previously, can be grouped into four broad categories: fluid-flow-
induced oscillations of volcanic conduits (Ferrick et al. 1982); exci-
tation of fluid-filled cracks (Chouet 1992); hydrothermal boiling in
groundwater channels (Leet 1988); oscillation of magma bodies of
various geometrical shapes (Kubotera 1974; Chouet 1985; Crosson
& Bame 1985). An important ingredient of all of these models is the
assumption that the oscillating body (a magma-transporting conduit
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such as a crack or pipe) behaves as a linear oscillator that may be
set into resonance as a result of a sustained disturbance. Resonance
and possible path/site effects could also explain the series of sharp
spectral peaks observed in many volcanic tremor occurrences (e.g.
Ferrazzini & Aki 1992; Goldstein & Chouet 1994).

Observations suggest, however, that tremor source processes ex-
hibit more complexity than any linear model can account for. Fukao
et al. (1998) reported the occurrence of damped oscillations in vol-
umetric strain records shortly before and after the 1986 Izu–Oshima
volcano eruption, Japan, which were followed by volcanic tremor
episodes. These oscillations had some unusual characteristics, such
as a low-frequency content of either 20 or 40 mHz, with dramatic
changes in the polarity of the initial motion. Fukao et al. (1998)
attributed this behaviour to an episodic supply of magma to the con-
duit and its subsequent drainage back into the reservoir. They also
noted that if this is the disturbance causing the excitation of tremor,
then the input forcing frequency they observed is abnormally low
in comparison with the resulting high-frequency (1–10 Hz) tremor
signal.

On theoretical grounds, Julian (1994) pointed out that the fre-
quency output of a linear oscillator cannot contain frequencies that
were not present in its input; therefore a non-linear process of some
kind is essential to the ability of a system to generate volcanic tremor.
Furthermore, he formulated a lumped-parameter model involving
non-linear oscillations excited by the flow of an incompressible vis-
cous fluid through a channel of movable elastic walls. Owing to the
Bernoulli effect, whenever the flow speed increases the fluid pres-
sure should decrease and the channel walls will move towards each
other to constrict the flow; the opposite process of pressure increase
and flow speed decrease will result in the opening of the channel.
For increasing values of the pressure parameter there can be a range
of types of behaviour, starting with simple cycles of opening and
closing of the channel walls exhibiting a harmonic frequency spec-
trum with sharp peaks, developing to an almost broad-band signal
after the fluid pressure exceeds a critical value.

Non-linear oscillations are usually described by ordinary or par-
tial differential equations, which are much more difficult to analyse
mathematically than their linear counterparts. One difficulty is that
it is impossible to solve such equations analytically, so one must rely
heavily on numerical integration and graphical methods of solution
representation, in order to have a qualitative view of their behaviour.
One such graphical method uses as coordinates the solution x and its
time derivatives that appear in the equation (ẋ , ẍ, . . . , x (n)) forming
an (n + 1)-dimensional space that is called the phase or state space
(Jordan & Smith 1987). The behaviour of the solutions will depend
on the initial conditions chosen and on the values of the free param-
eters present in the equations. Possible drifting in the values of these
parameters is going to cause a change in the qualitative character of
the solutions, a phenomenon that is defined as bifurcation (Drazin
1994). After some parameter has reached a critical value, owing to a
series of repeated bifurcations the solution will move to an aperiodic
and almost random-looking regime, which Li & York (1975) called
chaos.

Lorenz (1963) first demonstrated the existence of chaotic solu-
tions by solving numerically a set of three coupled non-linear dif-
ferential equations, which represented a simplified version of the
Navier–Stokes equations in fluid dynamics. He also showed that
the solutions, when plotted in the phase space, defined orbits that
were attracted to a specific region and were unable to escape from
it. The geometrical object that was formed in the phase space, had a
fractal structure and a non-integer dimension, therefore it was later
called a ‘strange’ attractor (Ruelle & Takens 1971). Since Lorenz’s

discovery, systems governed by non-linear differential equations
that may also have chaotic solutions were found to exist in almost
every scientific discipline. Geophysical examples of such systems
include the vertical ground movements in the Campi Flegrei caldera
(Cortini et al. 1991), rays that propagate through strongly laterally
varying media (Keers et al. 1997) and variations in the period of
rotation of the Earth (Frede & Mazzega 1999).

This work aims to investigate the possibility put forward by the
arguments presented above, that volcanic tremor signals may be the
result of non-linear processes for the case of tremor data recorded
during the 1996 Vatnajökull eruption in central Iceland. This task is
accomplished using a variety of methods of non-linear time-series
analysis based on the theory of non-linear dynamics. First, a brief
summary of the seismicity associated with the eruption is presented,
placing emphasis on the temporal evolution of the tremor behaviour.
Next, the problem of phase space reconstruction from the vertical
component seismogram records is considered, in an attempt to re-
cover the attractor that controls the generation of tremor. Taking
advantage of the fact that the future states of a non-linear system
can be predicted in the phase space, prediction errors of different
segments of the tremor time-series are compared, in order to deter-
mine whether the attractor dynamics change substantially in time.
Finally, the results of this analysis are discussed and compared with
those obtained by a similar study on Hawaiian tremor, published by
Chouet & Shaw (1991).

D E S C R I P T I O N O F T H E 1 9 9 6
VA T N A J Ö K U L L E R U P T I O N

The Vatnajökull glacier is a permanent ice cap that covers a large
part of central Iceland (Fig. 1). Underneath this ice cap a num-
ber of central volcanoes exist and the most active of them, situated
at its NW part, are Bárdarbunga and Grimsvötn. Only during the
last century six major eruptions have occurred in the area, pro-
ducing volumes of erupted lava that range from 0.03 to 0.4 km3

(Gudmundsson & Björnsson 1991). A consequence of the interac-
tion of magma with ice is the production of large amounts of melt-
water that are usually drained underneath the glacier to the south
coast, causing catastrophic floods.

A detailed description of the main phase of the eruption, including
the event location procedure used, the classification of the volcanic
earthquakes and spectral analysis of tremor, has been published
elsewhere (Konstantinou et al. 2000) therefore only a brief sum-
mary will be given here. The seismicity associated with the 1996
eruption started at 10:45 GMT, September 29 with an Mw = 5.6
earthquake occurring in the area of the Bárdarbunga caldera
(Einarsson et al. 1997). Focal mechanisms of this earthquake ob-
tained by waveform inversion of teleseismic data indicate a substan-
tial non-double-couple component that can be interpreted either as
a rupture along a ring fault (Nettles & Ekström 1998) or breaking
of an asperity (Zobin 1999) caused by an inflating magma cham-
ber underneath Bárdarbunga. About half an hour later an episodic
swarm of low-frequency earthquakes (1–2 Hz) followed, with epi-
centres that delineated the rim of the Bárdarbunga caldera. In the
afternoon the seismic activity declined but resumed again during
the evening with a swarm of mixed-frequency events (1–4 Hz) mi-
grating towards Grimsvötn. During the following 2 days (Septem-
ber 30–October 1) the onset of the subglacial eruption took place,
with mixed-frequency events occurring in the area between the
two volcanoes. The eruption became subaerial on the afternoon of
October 2 and an eruption fissure was formed, while the seismic
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Figure 1. The NW part of the Vatnajökull glacier where the 1996 eruption took place (unshaded terrain is ice covered). Solid lines represent the outline of
calderas and dashed lines the outlines of central volcanoes. The epicentre of the Mw = 5.6 Bárdarbunga earthquake that initiated the seismic activity is shown
by the star. The black dot indicates the position of the closest station, HOT23. The inset shows the relative location of the eruption site on the map of Iceland
(white areas indicate permanent glaciers).

activity started to decline. In the following days (October 3–6) only
a few earthquakes occurred near the fissure, while most of the ac-
tivity consisted of low-frequency events and had shifted northwards
to the area between the Bárdarbunga and Tungafellsjökull volcanic
systems.

All volcano-seismic phenomena related to the eruption were
recorded using temporary (HOTSPOT) and permanent (SIL) seis-
mic networks, covering most parts of the country (Fig. 2). HOTSPOT
was a joint project between Princeton and Durham Universities, the
Icelandic Meteorological Office and the US Geological Survey, hav-

ing as its primary purpose the collection of high-quality digital data
of local and teleseismic events. HOTSPOT consisted of 30 stations
equipped with broad-band three-component instruments, that had
a flat velocity response in the frequency range 0.03–20 Hz and
Refraction Technology 72a-02 16-bit data loggers recording con-
tinuously at a rate of 20 samples s−1, while absolute timing was
provided by GPS receivers. HOTSPOT remained in operation for
the 2-year period between 1996 August and 1998 August. The
South Iceland Lowlands (SIL) network is operated by the Icelandic
Meteorological Office and consisted (at the time of the eruption)
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Figure 2. Map showing the location of the temporary (HOTSPOT) and per-
manent (SIL) networks that were operational during the Vatnajökull eruption.

of 30 stations with broad-band or short-period sensors, recording
local earthquake data using a triggering mechanism at a rate of
100 samples s−1.

During September 28–29 the seismograms recorded at the clos-
est station to the eruption site (HOT23) were severely contaminated
by ocean microseismic noise (Fig. 3) with a dominant frequency of
0.25 Hz. No other seismic signal was visible, however, examination
of the frequency domain during that period by means of spectro-
grams showed the existence of a higher-frequency signal in five
narrow bands (0.5–0.7, 1.6, 2.2, 2.8, 3.2 Hz) (Konstantinou et al.
2000). In the days that followed volcanic tremor became broad-band,
but isolated peaks at almost the same frequency bands could still
be distinguished in the spectrograms. An attempt to recognize par-
ticular wave types was not successful, since it was found that the
tremor wavefield was composed of a complex mixture of body and
surface waves; similar observations have been published for tremor
from the Arenal volcano in Costa Rica (Hagerty et al. 2000) and Mt
Semeru in Indonesia (Schlindwein et al. 1995).

Tremor activity started being visible on the seismograms at the
onset of the eruption as a relatively low-amplitude, continuous sig-
nal just above the level of ocean microseismic noise (Fig. 4). During

Figure 3. (a) Vertical component velocity waveform recorded at HOT23 2 days before the onset of the eruption showing contamination with microseismic
noise. (b) The same trace after high-pass filtering at 0.5 Hz, revealing a low-amplitude high-frequency signal. The spectrograms for this time period exhibit
peaks at 0.5–0.7, 1.6, 2.2, 2.8 and 3.2 Hz. The time given on the right is the start time (GMT) for the trace.

the night of October 1 the amplitude of the signal increased progres-
sively, being visible at HOT23 without having to perform any filter-
ing. Similar activity continued until midday when high-amplitude,
cigar-shaped bursts started being superposed on the lower-amplitude
background tremor (Fig. 5). The number of bursts steadily declined
as the eruption was progressing (Fig. 6a), while their average du-
ration was of the order of ±250 s with a standard deviation that
varied considerably from day to day (Fig. 6b). After the eruption be-
came subaerial there were episodic cycles of high-amplitude tremor
mixed with periods when only ocean microseismic noise could be
seen. Spectrograms of the data recorded on October 13 do not show
the presence of any higher-frequency signal, thus marking the end
of the tremor activity.

R E C O N S T R U C T I O N
O F T H E P H A S E S P A C E

The problem of reconstruction of the phase space from a scalar
time-series (such as a seismogram) is of great practical importance,
since it is the starting point of all non-linear time-series analysis
methods. Any time-series resulting from a non-linear process can be
considered as the projection on the real axis of a higher-dimensional
geometrical object that describes the behaviour of the system under
study (Kantz & Schreiber 1996). Takens (1981) and later Sauer et al.
(1991), showed that it is possible to recover this object from a series
of scalar measurements s(t) in an m-dimensional Euclidean space
using points y with coordinates

y = s(t), s(t + τ ), . . . , s(t + (m − 1)τ ), (1)

where τ is called the delay time and for a digitized time-series is
a multiple of the sampling interval used. The dimension m of the
reconstructed space is considered as the sufficient dimension for
recovering the object without distorting any of its topological prop-
erties, thus it may be different from the true dimension of the space
where this object lies. This procedure of phase space reconstruction
is termed embedding and the formulation of Takens is called the
delay embedding theorem, with m being the embedding dimension.
In practical applications both the delay time and the embedding
dimension have to be determined from the time-series itself.
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Figure 4. One hour of continuous volcanic tremor during the onset of the subglacial eruption recorded at HOT23. The times given on the right are the start
times (GMT) for each trace. The amplitude scale is normalized to the largest value of the three traces (last trace). The large-amplitude signal at the beginning
of the first trace is an earthquake. Note the gradual increase of the tremor amplitude.

Figure 5. Same as in Fig. 4 for tremor exhibiting high-amplitude, cigar-shaped bursts that are superposed on low-amplitude background tremor. Note how
some of the bursts have a slow amplitude decay while others decay abruptly.

In the case of the tremor signals that were recorded during
the 1996 Vatnajökull eruption a selection of suitable data for the
reconstruction of the phase space had to be made. The main cri-
terion for suitability concerns the amount of contamination of the
data by ocean microseismic (or possibly other) noise. Earlier stud-
ies have revealed that filtering the data in order to remove the noisy
part of the signal may result in a change in the original number of
degrees of freedom (and therefore of the embedding dimension) of
the system (Brandstätter & Swinney 1987; Abarbanel et al. 1993).
In this study only data recorded at the nearest station to the erup-
tion site (HOT23) are considered, where a tremor could be clearly
seen with a high signal-to-noise ratio during the first 2 days of the
eruption (October 1–2).

Selection of the delay time

One proposed way of choosing the delay time τ for phase space
reconstruction is by calculating the autocorrelation function of the
data and choosing τ as the time of the first zero crossing (e.g. Kantz
& Schreiber 1996). A characteristic of chaotic time-series is that
their autocorrelation functions drop to zero very quickly, reflecting
the fact that the past states of the system decorrelate exponentially
from the future ones. By calculating the autocorrelation function of
the tremor data for timelags of 0–40 samples (2 s) it was found that
in most cases the first zero crossing was reached very quickly at a
delay time of four samples (0.2 s) (Figs 7a and b). An objection to
the selection of the delay time in this way is that the autocorrelation
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Figure 6. (a) Distribution of the number of bursts during the whole period
of the eruption (October 1–11). (b) Average duration and standard deviation
of the bursts for each day.

function takes into account only linear correlations of the data
(Abarbanel 1996). Fraser & Swinney (1986) proposed a kind of non-
linear autocorrelation function for time delay selection, which they
called average mutual information (AMI) defined as

I (τ ) =
∑

i j

pi j (τ ) ln pi j (τ ) − 2
∑

i

pi (τ ), (2)

where pi is the probability that the signal s(t) assumes a value inside
the i th bin of a histogram, while pi j is the probability that s(t) is in
bin i and s(t + τ ) is in bin j . When τ becomes large, then s(t + τ )
conveys no information concerning s(t) and pi j factorizes to pi p j

yielding I (τ ) = 0.
Based on the fact that the first minimum of AMI marks the delay

time where s(t + τ ) adds maximum information to the knowledge
we have from s(t) (or where the redundancy is the least), this time is
considered to be the best choice for τ . AMI was calculated for the
data for timelags of 0–100 samples (5 s) and for time windows of
5, 10, 20 min, having very small variation and showing no minimum
in each case (Figs 7c and d). The absence of a minimum from the
AMI graph usually indicates that the data have not been sufficiently
sampled, in which case a delay time of τ = 1 sample (0.05 s) is con-
sidered the most suitable choice (Abarbanel 1996). A consequence
of undersampling is that it precludes the application to the data of
any method for the calculation of fractal dimensions or Lyapunov
exponents, which both require well-resolved phase space orbits in
order to give reliable results.

In order to make a final decision concerning the value of the delay
time, 2-D phase portraits of the tremor attractor were reconstructed
using delay times in the range of one to four samples (0.05–0.2 s)
(Fig. 8). A value of τ smaller than the optimum will result in the
clustering of the points along the diagonal of the phase portrait, while
a value greater than the optimum would make the attractor take a
complicated shape. The latter case occurs at delay times with three
to four samples (0.15–0.2 s) as demonstrated by the phase portraits
in Figs 8(c) and (d). For delay times of one to two samples (0.05–
0.1 s) the points are spread over the two sides of the diagonal and
are not tightly clustered along it. Taking into account the indication
of undersampling obtained using the AMI method, it is concluded
that the best choice of the delay time is τ = 1 sample (0.05 s).

Selection of the embedding dimension

The selection of a sufficient dimension that can be used for the
embedding relies on the principle that orbits of attractors describ-
ing non-periodic signals should not intersect (e.g. Abarbanel 1996).
Any intersection means that the orbit is revisiting exactly the same
parts of the phase space, which implies periodic rather than chaotic
behaviour. This kind of intersection or overlap between orbits re-
sults when the attractor is embedded in a dimension lower than the
sufficient one stated by the embedding theorem. If two points ya

and yb are close in the same neighbourhood in phase space, this is
so either because the dynamic evolution of the orbits brought them
close or owing to an overlap resulting from the projection of the
attractor to a lower dimension. In order to decide which of the two
possibilities is true, a comparison should be made of the Euclidean
distance of the two points |ya − yb| in two consecutive embedding
dimensions d and d + 1. For an embedding dimension m and delay
time τ these distances are given by (Kennel et al. 1992)

R2
d =

d−1∑
m=0

[sa(t + mτ ) − sb(t + mτ )]2 (3)

moving from dimension d to d + 1 means that a new coordinate is
being added in each delay vector, which is equal to s(t + dτ ). The
Euclidean distance of the two points in dimension d + 1 will thus
be

R2
d+1 = R2

d (t) + |sa(t + dτ ) − sb(t + dτ )|2. (4)

The relative distance between the two points in dimensions d and
d + 1 will then be the ratio√

R2
d+1 − R2

d

R2
d

= |sa(t + dτ ) − sb(t + dτ )|
Rd

. (5)

If this distance ratio is greater than a predefined value, say v, then
the points ya and yb are characterized as ‘false’ neighbours, being in
the same neighbourhood because of the projection and not because
of the dynamics. The procedure is repeated for all pairs of points at
higher dimensions until the percentage of false neighbours becomes
zero and then the attractor is said to be unfolded. For limited data
sets, Kennel et al. ( 1992) found it necessary to add a second criterion
for characterizing two points as false neighbours, which is

Rd+1 >
σ

v
, (6)

where σ is the standard deviation of the data around its mean. Taking
σ as a representative measure of the size of the attractor, this criterion
reflects the fact that if two points are false neighbours, they will be
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Figure 7. Top panel: autocorrelation function calculated for a 5 min window of (a) high-amplitude burst and (b) continuous tremor. Lower panel: average
mutual information calculated for delay times 1–100 using 5, 10 and 20 min of data for (c) a data segment that contains a high-amplitude burst and (d) continuous
tremor (the small peak in each of the three AMI estimates probably represents a random fluctuation of AMI in the data).

stretched to the extremities of the attractor when they are unfolded
from each other at dimension d + 1. The authors also noted that
a false nearest-neighbours algorithm that does not implement this
criterion will give an erroneous low embedding dimension even for
high-dimensional stochastic processes.

Naturally, two important issues that have to be addressed con-
cern the length of the analysis window that should be used and
the selection of a suitable value for v. The length of the analysis
window is usually chosen in such a way that the points resulting
from the embedding populate the attractor as densely as possible.
However, the long duration of the tremor data poses a trade-off be-
tween large windows, which would also include more noise and
need extra computer time for each analysis, while in that time inter-
val the properties of the source may vary substantially; on the other
hand, smaller windows may give biased false-neighbour statistics.
Since the time-series length used in similar studies was usually in the
range of 10 000–32 000 samples (e.g. Brandstätter & Swinney 1987;
Frede & Mazzega 1999), the analysis of the tremor data was con-
ducted using segments with a duration of 20 min (24 000 samples).
The value to which the distance ratio of the points is compared has
been found for many non-linear systems by Abarbanel (1996) to be
around 15. Values in the range of 1–20 were tested in order to see

what effect this variation may have on the distribution of the false
nearest-neighbour statistics in dimensions 1–10. Most of the data
show a 0 per cent false neighbours at either dimension seven or eight
for v = 9–17 (Fig. 9). Knowing the exact embedding dimension m
of the attractor makes it possible to estimate upper bounds for its
fractal dimension DF, since according to the embedding theorem
m > 2DF, thus in our case the upper values of DF are between 3.5
and 4.0.

The percentage of false neighbours did not drop to zero for a
number of time segments that were recorded in the early hours of
October 1 (01:48–07:10 GMT) implying the presence of random
noise in the data (Fig. 10). As a stochastic process, noise should
have infinite degrees of freedom, showing no tendency to unfold
at any specific dimension. Non-linear deterministic signals that
are contaminated by noise usually show a non-zero percentage of
false neighbours even at high dimensions. This effect can be easily
demonstrated by adding different amounts of random noise to a data
segment that otherwise has 0 per cent false neighbours at dimen-
sion eight (Fig. 11). A possible explanation for the presence of a
random noise source in that time interval is the interaction of rising
magma with ice and the subsequent flash boiling that took place.
The fact that this noise source disappears later may be attributed
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Figure 8. 2-D phase portraits of the tremor attractor, reconstructed using 20 min of data (24 000 samples) and delay time (a) τ = 1 (0.05 s), (b) τ = 2 (0.1 s),
(c) τ = 3 (0.15 s) and (d) τ = 4 (0.2 s).

to two factors: first, the ice-melting and boiling process has moved
from the rock–ice interface upwards, entirely into the ice cap and
second, the flanks of the magma–ice interface should have cooled
rapidly and solidified as pyroclastic glass with a temperature of 0 ◦C
(Gudmundsson et al. 1997), precluding any further boiling. Taking
into account that the sensor of station HOT23 was installed on a rock
outcrop and not on ice makes this explanation quite plausible.

TE M P O R A L V A R I A T I O N S O F P H A S E
S P A C E D Y N A M I C S

The cross-prediction method

Changes in the dynamics of the orbits in the phase space usually rep-
resent variations of the physical parameters that control a non-linear
system and consequently are of great importance for any modelling
effort. Since in most cases the only available data are a time-series,
monitoring the temporal changes in the dynamics is the most ap-
propriate way of detecting different dynamic regimes in a signal.
One method of doing this is to divide the time-series into segments
and for each segment to calculate a quantity (the fractal dimension,
Lyapunov exponents, etc.) relevant to the dynamics, mapping in ef-

fect its variation as a function of time. Two problems regarding this
approach are: (1) the choice of an appropriate quantity, bearing in
mind that the fractal dimension and Lyapunov exponents need very
well-resolved orbits and noise levels of lower than 2 per cent (Kantz
& Schreiber 1996) in order to yield meaningful results, and (2) how
measurements from different segments can be compared directly
instead of just estimating their statistical properties.

Schreiber (1997) proposed a method that utilizes the direct com-
parison of prediction errors between different parts of a given time-
series. Based on the assumption that the signal is a deterministic
one, then after reconstructing the phase space using delay vectors
y1, y2, . . . , yN the dynamics may be approximated by the difference
equation

yn+1 = F(yn). (7)

Knowing the present state of the system yn it is possible to predict
one step into the future yn+1 in the following way: since the function
F describing the evolution of the dynamics is continuous, a past state
yn′ very close to the present one is taken and its image yn′+1 is used as
the predicted future value. However, when using such a prediction
scheme two issues should be taken into account: (a) predictions
will become exponentially inaccurate as one tries to predict more
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Figure 9. Distribution of the fraction of false nearest neighbours (repre-
sented by the grey-scale) as a function of the value of distance ratio for
embedding dimensions 1–10 (see text for more details).

Figure 10. Distribution of the fraction of false nearest neighbours calcu-
lated for a data segment recorded on October 1 at 00:28 GMT (black circles)
and at 05:08 GMT on the same day (grey squares) for v = 10, showing a
non-zero percentage of false neighbours in dimensions 1–10 for the latter.

than one step into the future, and (b) since all interpoint distances
are contaminated with an uncertainty owing to the finite resolution
of the data, all points closer than a distance ε are equally good
for predicting yn+1. By forming a neighbourhood U(yn′ ) of radius ε

around yn , the final predicted value ŷn+1 will be the arithmetic mean
of all the images yn′+1,

Figure 11. The effect of different amounts of random noise on the false
nearest-neighbour statistics for v = 10. Black circles indicate the original
data, grey squares and white triangles indicate the same data with the addition
of 5 and 10 per cent of random noise, respectively.

ŷn+1 = 1∣∣U(yn′ )

∣∣ ∑
yn′+1, (8)

where |U(yn′ )| is the number of points in the neighbourhood U(yn′ ).
This method of prediction was first suggested by Lorenz (1969) and
was later used by Kennel & Isabelle (1992) for detecting determin-
istic structure in real data sets.

In order to compare the prediction errors of different parts of a
time-series, it is split into a number of non-overlapping segments of
equal length. If the prediction is performed inside segment i , then the
resulting predicted value is going to be ŷi

n+1. Instead of comparing
it with the actual value yn+1 in that segment, it is compared with its
equivalent in segment j , and the root mean squared prediction error
γ (i, j) is defined as (Schreiber 1997)

γ (i, j) =

√√√√ 1

N

N−1∑
n=0

(
ŷi

n+1 − y j
n+1

)2
, (9)

where N is the total number of points in each segment. The distri-
bution of the rms prediction error in the i, j plane will then indicate
which segments have similar dynamics and thus predict each other
well by yielding a minimum error.

Application to the tremor data

The cross-prediction method described above was applied to the
tremor data in order to investigate the possibility of temporal vari-
ations of phase space dynamics. An analysis window of 20 min
was chosen again, with a length for each segment of 1 min (1200
samples). In practice the selection of the segment length should be
determined in such a way that enough points will be available for a
reliable estimate of γ (i, j) without making the segments unneces-
sarily long, which may result in degrading the time resolution of the
prediction error distribution. The initial neighbourhood size ε was
taken as the variance of the samples in the analysis window divided
by 1000 and a minimum number of 30 neighbours was required in
order to make each prediction. If the neighbours found were less
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Figure 12. Distribution of the rms prediction error versus model and predicted data segments for (a) continuous tremor, (b) cigar-shaped bursts and low-
amplitude background tremor recorded on October 1. The times given on the right are the start times (GMT) for each trace.

than 30, the neighbourhood size increased by a factor of 1.2 until
the minimum number was reached. The embedding parameters were
those determined earlier, i.e τ = 1 and m = 7–8.

The analysis revealed two different patterns of the distributions of
the rms prediction error, each being correlated to the tremor activity
seen on the seismograms. For the continuous tremor recorded during
the early hours of October 1 the prediction error shows an almost
flat surface in the (i, j) plane (Fig. 12a), indicating similar dynamics
throughout the 20 min of the analysis window. This changes dra-
matically when the cigar-shaped bursts start appearing superposed
on the background tremor. The prediction error surface becomes
distorted and the segments that correspond to the bursts can only
predict themselves well forming a minimum, giving a maximum
error when they are used to predict the segments of the background
tremor (Fig. 12b). In cases when there was more than one burst in
the analysis window, it was found that the segments corresponding
to one burst could equally well predict the segments of the other,
indicating again a similarity of phase space dynamics. The differ-
ence in the dynamics of cigar-shaped bursts and background tremor
was also found to have an effect on their amplitude spectra. The
spectra of the bursts and of high-amplitude continuous tremor ex-
hibit an almost exponential decay at high frequencies in contrast to
the low-amplitude background tremor spectra that have a power-law
decay. An exponential decay of the amplitude spectrum has also been
found as a characteristic of signals generated by low-dimensional
chaotic processes (Sigeti & Horsthemke 1987).

D I S C U S S I O N A N D C O N C L U S I O N S

The suggestion that volcanic tremor is the result of non-linear source
processes involving one or several different kinds of magmatic activ-
ity is not only supported by theoretical considerations (Shaw 1992;

Julian 1994), but also by certain characteristics observed in tremor
signals, which are believed to be common among systems exhibit-
ing aperiodic, chaotic behaviour. Such characteristics have also been
found in the tremor that accompanied the 1996 Vatnajökull eruption
in central Iceland and include:

(i) autocorrelation functions that rapidly reach zero;
(ii) broad-band spectra that decay exponentially in higher fre-

quencies; and
(iii) the existence of an attractor, a fractal geometrical object,

formed by orbits that move within a bounded region of a low-
dimensional Euclidean space, describing the evolution of the states
of the system that generates tremor.

In an earlier study, Chouet & Shaw (1991) investigated the pos-
sibility that volcanic tremor occurring at Puu Oo crater, Hawaii,
was generated by a non-linear source exhibiting chaotic behaviour.
Visual observations of the volcanic activity near the crater indi-
cated that the tremor recorded on the seismograms was the result
of complex processes of magma flow and degassing operating over
a hierarchy of scales. Having recorded the tremor activity at a rate
of 200 samples s−1 they were able to recover the attractor describ-
ing the tremor source, which had a disc-shaped structure strikingly
similar to the attractor shown in Figs 8(a) and (b). The calculation
of its fractal dimension at different stations for sliding windows of
10 s showed that it was fluctuating in the range of 3.1–4.1 with a
mean of 3.75. Owing to the presence of noise superposed on the
tremor signal, the authors considered these values to represent the
upper bounds of the attractor dimension. The fact that these dimen-
sion values were low was interpreted as an indication that the tremor
dynamics ‘oscillate’ between a stable, quasi-periodic and a chaotic
regime.
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Figure 13. Log10–log10 graphs of the amplitude spectrum and corresponding waveforms for 1 min of (a) a high-amplitude burst and (b) low-amplitude
background tremor. Note the different rate of decay in the high frequencies and the higher-frequency content of the burst.

The similarities between the properties of the Vatnajökull and
Hawaiian tremor as demonstrated by the appearance of the attrac-
tors and the upper bounds of their fractal dimensions, point to the
possibility of universal characteristics of tremor source processes.
Furthermore, the conclusion of Chouet & Shaw (1991) of a tremor
process that operates between two different regimes, agrees well
with the results obtained by the cross-prediction method. Tremor
starts continuously at the beginning of the eruption, exhibiting
chaotic behaviour and later evolves to a stable, quasi-periodic signal
interrupted by large-amplitude, chaotic bursts. This phenomenon
has been observed in other non-linear systems, such as experiments
on Rayleigh–Bénard thermal convection in a fluid (Bergé et al. 1980)
or in the theoretical model of atmospheric flow formulated by Lorenz
(Manneville & Pomeau 1980) and has been termed ‘intermittency’.
Laboratory experiments have shown that the intermittent regime
usually occurs when a control parameter (e.g. the Reynolds num-
ber) has reached a critical value.

The identification of the physical mechanism causing the tremor
observed during the Vatnajökull eruption, however, is still sub-
ject to uncertainty. A possible model that can be derived from the
observations presented above, may have to do with two different
magma flow regimes, one generating continuous tremor and the

other background tremor interrupted by bursts. Intermittent tur-
bulence owing to the transition from a purely laminar to a turbu-
lent flow may be a good candidate for explaining the excitation of
Vatnajökull tremor. Assuming that the magma reservoir is con-
nected to the surface with a narrow cylindrical conduit of length
l and diameter d (where l/d > 50), then as the Reynolds number
increases owing to an increase in the flow velocity, turbulent slugs
may develop and ascend through the conduit (Faber 1995). The
slugs will be separated from each other by intervals of laminar flow
and will exert a variable force on the conduit walls. Continuous
tremor, therefore, may be the result of ascending turbulent slugs
separated by small intervals of laminar flow. As time elapses and
the Reynolds number decreases these intervals become larger, giv-
ing rise to background tremor, while the slugs generate the observed
bursts. Turbulent slug flow of hydrothermal fluids and gases has been
used by Hellweg (2000) as one possible explanation for harmonic
tremor occurring during a non-eruptive period at Lascar volcano,
Chile.

A very important aspect stemming from the observed low-
dimensional nature of the tremor signals, is that it may be possible
to describe the tremor source using just a small number of ordi-
nary, rather than partial differential equations, which arises as a
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consequence of the small number of degrees of freedom involved
(Procaccia 1988). Future studies should try to formulate such a
mathematical model of the interactions between the fluid flow and
the conduit walls, which can reproduce the observed behaviour of
tremor signals qualitatively.
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quakes near Bárdarbunga volcano, Iceland, J. geophys. Res., 103, 17 973–
17 983.

Procaccia, I., 1988. Universal properties of dynamically complex systems:
the organisation of chaos, Nature, 333, 618–623.

Ruelle, D. & Takens, F., 1971. On the nature of turbulence, Commun. Math.
Phys., 20, 167–192.

Sauer, T., York, J.A. & Casdagli, M., 1991. Embedology, J. Stat. Phys., 65,
579.

Schlindwein, V., Wasserman, J. & Scherbaum, F., 1995. Spectral analysis of
harmonic tremor signals from Mt Semeru, Indonesia, Geophys. Res. Lett.,
22, 1685–1688.

Schreiber, T., 1997. Detecting and analysing non-stationarity in a time series
using non-linear cross-predictions, Phys. Rev. Lett., 78, 843–846.

C© 2002 RAS, GJI, 148, 663–675



Non-linear source processes of volcanic tremor 675

Shaw, H.R., 1992. Non-linear dynamics and magmatic periodicity;
fractal intermittency and chaotic crises, Int. Geol. Congr., 29,
510.

Sigeti, D. & Horsthemke, W., 1987. High-frequency power spectra for sys-
tems subject to noise, Phys. Rev. A, 35, 2276.

Takens, F., 1981. Detecting Strange Attractors in Turbulence, Lecture Notes

in Math., Vol. 898, Springer, New York.
Wessel, P. & Smith, W.H.F., 1995. New version of the generic mapping tools

released, EOS, Trans. Am. geophys. Un., 76, 329.
Zobin, V., 1999. The fault nature of the Ms 5.4 volcanic earthquake preced-

ing the 1996 subglacial eruption of Grimsvötn volcano, Iceland, J. Volc.
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