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Abstract—The assumption that volcanic tremor may be generated by deterministic nonlinear source

processes is now supported by a number of studies at different volcanoes worldwide that clearly

demonstrate the low-dimensional nature of the phenomenon. We applied methods based on the theory of

nonlinear dynamics to volcanic tremor events recorded at Sangay volcano, Ecuador in order to obtain

more information regarding the physics of their source mechanism. The data were acquired during 21–26

April 1998 and were recorded using a sampling interval of 125 samples s�1 by two broadband seismometers

installed near the active vent of the volcano. In a previous study JOHNSON and LEES (2000) classified the

signals into three groups: (1) short duration (<1 min) impulses generated by degassing explosions at the

vent; (2) extended degassing ‘chugging’ events with a duration 2–5 min containing well-defined integer

overtones (1–5 Hz) and variable higher frequency content; (3) extended degassing events that contain

significant energy above 5 Hz. We selected 12 events from groups 2 and 3 for our analysis that had a

duration of at least 90 s and high signal-to-noise ratios. The phase space, which describes the evolution of

the behavior of a nonlinear system, was reconstructed using the delay embedding theorem suggested by

Takens. The delay time used for the reconstruction was chosen after examining the first zero crossing of the

autocorrelation function and the first minimum of the Average Mutual Information (AMI) of the data. In

most cases it was found that both methods yielded a delay time of 14–18 samples (0.112–0.144 s) for group

2 and 5 samples (0.04 s) for group 3 events. The sufficient embedding dimension was estimated using the

false nearest neighbors method which had a value of 4 for events in group 2 and was in the range 5–7 for

events in group 3. Based on these embedding parameters it was possible to calculate the correlation

dimension of the resulting attractor, as well as the average divergence rate of nearby orbits given by the

largest Lyapunov exponent. Events in group 2 exhibited lower values of both the correlation dimension

(1.8–2.6) and largest Lyapunov exponent (0.013–0.022) in comparison with the events in group 3 where the

values of these quantities were in the range 2.4–3.5 and 0.029–0.043, respectively. Theoretically, a nonlinear

oscillation described by the equation €xxþ b _xxþ cgðxÞ ¼ f cosxt can generate deterministic signals with

characteristics similar to those observed in groups 2 and 3 as the values of the parameters b; c; f ;x are

drifting, causing instability of orbits in the phase space.
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Introduction

The study of volcanic tremor poses two difficult problems that must be overcome

in order for volcanoseismologists to obtain a better understanding of this

1 Institute of Earth Sciences, Academia Sinica, P.O. Box 1-55, Nankang, Taipei, 115 Taiwan, R.O.C.

E-mail: kostas@earth.sinica.edu.tw

Pure appl. geophys. 161 (2004) 145–163
0033 – 4553/04/010145 – 19
DOI 10.1007/s00024-003-2432-y
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phenomenon. The first problem is related to the restrictive assumptions that are

usually made about the nature of the tremor source, requiring its description in terms

of a linear oscillator that is set into resonance by a sudden sustained disturbance

(e.g., FERRICK et al., 1982; CHOUET, 1985; LEET, 1988). The second problem concerns

the selection of appropriate methods in order to investigate the properties of such

signals, with spectral analysis being the method most commonly used. For a recent

review of the methods and source modelling applied to volcanic tremor signals

recorded at different volcanoes worldwide, the interested reader may refer to

KONSTANTINOU and SCHLINDWEIN (2002).

The two problems mentioned above are interrelated and the suggestion put

forward by some authors (SHAW, 1992; JULIAN, 1994) that a nonlinear process of

some kind may be involved in tremor generation, requires one to reconsider which

methods should be used in order to study it. Despite its usefulness for studying linear

processes, spectral analysis can provide little insight into the physics of signals

generated by nonlinear mechanisms. The main reason for this is the appearance of

such signals in the frequency domain, which shows that they consist of a large

number of frequencies resembling broadband random noise. The cause of this

apparent randomness lies in the drifting of the parameters that control a nonlinear

system, that may change its spectral character from periodic to completely

broadband. This kind of behavior is defined as bifurcation (DRAZIN, 1994) and a

series of repeated bifurcations will result in an aperiodic signal which is characterized

as ‘chaotic’ (LI and YORK, 1975).

The methods based on the discipline of nonlinear dynamics utilize the notion of

the phase or state space in order to describe how the behavior of a nonlinear system

evolves as one or more of its parameters are bifurcating. This description is achieved

by using an m-dimensional Euclidean space where m is proportional to the number of

degrees of freedom present. The different states of the system define orbits that move

around the phase space in such a way so as to accommodate three operations: (1)

orbits should not intersect or overlap, since this would mean that the system revisits a

previous state implying periodic and not chaotic behavior; (2) orbits should always

move within a bounded region of the phase space due to dissipation of energy in the

system; (3) orbits that are initially close may diverge exponentially from each other

due to sensitivity to initial conditions. The geometrical object that is being formed as

a result of these three operations has fractal properties and was called ‘strange’

attractor (RUELLE and TAKENS, 1971).

Nonlinear time series analysis uses all these concepts in order to devise

practical methods for studying chaotic signals by reconstructing the phase space

and extracting useful information about their driving mechanism. Even though

such methods have been applied successfully to numerous nonlinear systems, their

application to volcanic tremor time series is still elementary. CHOUET and SHAW

(1991) were the first to investigate the phase space properties of volcanic tremor

recorded at Pu’u O’o crater, Hawaii. Their study revealed a low value of the
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fractal dimension DF of the tremor attractor reaching an average value of 3.75.

This was interpreted as an indication that tremor generation is not controlled by a

stochastic process (where DF should be infinite), therefore it can be described by

only a few degrees of freedom. Subsequent studies of tremor recorded at Mt. Etna

(GODANO et al., 1996), low-frequency events from Stromboli and Vulcano islands

(GODANO and CAPUANO, 1999) and tremor recorded during the 1996 Vatnajökull

eruption in central Iceland (KONSTANTINOU, 2002) reported similar estimates of

fractal dimensions (Table 1) confirming the low-dimensional nature of the

phenomenon.

This paper describes the results obtained from the application of nonlinear

time series analysis methods to tremor events recorded at Sangay volcano,

Ecuador, in an effort to investigate whether the observed signals were generated by

a nonlinear deterministic source. We chose to study this particular dataset for the

following reasons: (1) the explosive activity and the seismic signals generated at

Sangay share many similarities with those reported in many other volcanoes, such

as Arenal in Costa Rica (BENOIT and MCNUTT, 1997), Karimsky in Russia

(JOHNSON et al., 1998) or Mt. Semeru in Indonesia (SCHLINDWEIN et al., 1995),

therefore our results may be relevant to these areas as well; (2) the duration of the

tremor events is short enough so as to lower the computer time needed for the

analysis and finely sampled so as to ensure that the tremor process is described

adequately in the phase space. First, we give a brief overview of the available data

and then we proceed to determine the optimum parameters for phase space

reconstruction of the tremor attractor. Based on this reconstruction we try to

quantify two important parameters that characterize a dynamic system: the

number of the effective degrees of freedom (i.e., only those degrees of freedom

relevant to the generation of tremor) given by the fractal dimension of the

attractor and the degree of chaoticity (i.e., how substantially unpredictable is the

behavior of our system) given by an estimation of the largest Lyapunov exponent.

Finally, we discuss our results and compare them with those obtained by previous

studies.

Table 1

Summary of previously published fractal dimension values estimated from tremor time series recorded at

different volcanoes

Volcano Event type DF Reference

Kilauea Tremor 3.1–4.1 CHOUET and SHAW (1991)

Mt. Etna Tremor 1.6 GODANO et al. (1996)

Stromboli Low-frequency 2.68 GODANO and CAPUANO (1999)

Vulcano Low-frequency 2.83–2.92 GODANO and CAPUANO (1999)

Vatnajökull Tremor 3.5–4.0 KONSTANTINOU (2002)
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Data Description and Selection

Sangay is the southernmost andesitic volcano of the Andean Northern Volcanic

Zone and has been continuously active since 1628 (HALL, 1977). Field observations

indicate that its activity consists mainly of summit vent explosions that eject ash and

ballistics, but it may also consist of lava extrusions. This kind of activity is

responsible for the accumulation of lava, debris and pyroclastic flows that created the

1800 m high Sangay edifice (MONZIER et al., 1999). During 21–26 April 1998 two

broadband three-component seismometers (Guralp CMG-40T) recording at a

sampling interval of 125 samples s�1, along with two electric condenser microphones

were installed near the active summit vent (Fig. 1) in an effort to monitor the seismic

and acoustic activity generated by the volcano. The spectral analysis of the seismic

Figure 1

Map of Sangay and station locations. Stations SAN1 and SAN2 (large triangles) contained broadband

seismometers and low-frequency microphones. Small triangles indicate the locations of single component

short-period sensors. Inset map shows location of Sangay within South America (from JOHNSON and LEES,

2000).
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and acoustic data as well as a classification of the seismic events recorded have been

previously published by JOHNSON and LEES (2000), therefore only a summary of

these aspects will be presented here.

JOHNSON and LEES (2000) grouped the seismic signals into three broad categories:

(1) simple short duration (<1 min) impulses generated by degassing explosions at the

vent (Fig. 2a); (2) extended degassing ‘chugging’ events of larger duration (2–5 min)

containing well-defined integer overtones (1–5 Hz) and a variable higher frequency

content, accompanied by sounds resembling those of a steam locomotive (Fig. 2b);

(3) extended degassing events that contain significant energy above 5 Hz that may

have resulted from the energetic jetting of material through the vent (Fig. 2c). The

authors also noted the absence of background tremor for the whole of the

observation period.

In the present study we have considered only the vertical component records from

the two stations and tried to select suitable events from groups 2 and 3 for our

analysis. The first criterion of suitability concerns the number of samples available in

Figure 2

Example of vertical velocity waveforms of seismic signals recorded at station SAN2. (a) Short duration

impulsive explosion event, (b) extended ‘chugging’ degassing event, (c) extended broadband degassing

event. Note the different time scales.
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each time series, since the methods for calculation of the fractal dimension or largest

Lyapunov exponent need well-resolved phase space orbits in order to yield reliable

results. The second criterion pertains to the level of noise present in the data, bearing

in mind that noise levels larger than 2% may cause biased estimates of these

quantities (KANTZ and SCHREIBER, 1996). Unfortunately, as it will be also mentioned

in the next section, numerous events showed contamination with random noise,

probably as a result of the weather conditions at the time of the experiment. The final

dataset considered for this study consists of 12 broadband/chugging events with high

signal-to-noise ratios and durations exceeding 90 seconds (Table 2).

Determination of Phase Space Reconstruction Parameters

Any time series generated by a nonlinear process can be considered as the

projection on the real axis of a higher-dimensional geometrical object that describes

the behavior of the system under study (KANTZ and SCHREIBER, 1996). The most

common method used for phase space reconstruction of this object relies on the so-

called Delay Embedding Theorem (TAKENS, 1981; SAUER et al., 1991). This theorem

states that a series of scalar measurements sðtÞ (such as a seismogram) can be used in

order to define the orbits describing the evolution of the states of the system in an

m-dimensional Euclidean space. The orbits will then consist of points x with

coordinates

x ¼ sðtÞ; sðt þ sÞ; . . . ; sðt þ ðm� 1ÞsÞ ð1Þ

where s is referred to as the delay time and for a digitized time series is a multiple of

the sampling interval used, while m is termed the embedding dimension. The

Table 2

Sangay tremor events selected for analysis

Event # Day Station Duration (s) Samples Type

1 112 SAN2 145 18,125 Broadband

2 112 SAN2 120 15,000 Broadband

3 112 SAN2 92 11,500 Broadband

4 112 SAN2 190 23,750 Broadband

5 111 SAN2 160 20,000 Chugging

6 112 SAN2 130 16,250 Chugging

7 112 SAN2 150 18,750 Chugging

8 114 SAN1 110 13,750 Chugging

9 115 SAN1 140 17,500 Chugging

10 115 SAN1 130 16,250 Chugging

11 116 SAN1 250 31,250 Chugging

12 116 SAN1 110 13,750 Chugging
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dimension m of the reconstructed phase space is considered as the sufficient

dimension for recovering the object without distorting any of its topological

properties, thus it may be different from the true dimension of the space where this

object lies. Both the s and m reconstruction parameters must be determined from the

data.

Determination of the Delay Time

There are two possible ways to estimate the delay time required by the embedding

theorem from an observed time series. The first is by calculating the autocorrelation

function of the data and selecting as s the time of its first zero-crossing. The

reasoning behind this choice is that the time when the autocorrelation function

reaches a zero value marks the point beyond where the sðt þ sÞ sample is completely

decorrelated from sðtÞ. The second way involves the calculation from the data of a

nonlinear autocorrelation function called Average Mutual Information (AMI)

defined as (FRASER and SWINNEY, 1986)

IðsÞ ¼
X

ij

pijðsÞ ln pijðsÞ � 2
X

i

piðsÞ ; ð2Þ

where pi is the probability that the signal sðtÞ takes a value inside the i-th bin of a

histogram and pij is the probability that sðtÞ is in bin i and sðt þ sÞ is in bin j. The first
minimum in the AMI graph is considered as the most suitable choice for s, since this
is the time when sðt þ sÞ adds maximum information to the knowledge we have from

sðtÞ.
Currently, there is no agreement among authors on which of the two methods

should be used in order to determine the delay time. ABARBANEL (1996) objects to the

use of the first zero-crossing of the autocorrelation function on the grounds that it

takes into account only linear correlations of the data. On the other hand, KANTZ

and SCHREIBER (1996) note that the estimation of s using AMI is reliable only for

two-dimensional embeddings. In most practical applications both methods are

employed and it is either found that the estimated delay times are similar (FREDE and

MAZZEGA, 1999) or that the two methods yield significantly different values of s, in
which case additional constraints may be needed (like the construction of two-

dimensional phase portraits for different values of s) in order to make a final decision

(KONSTANTINOU, 2002).

For the Sangay tremor events we calculated both the autocorrelation function

and AMI using timelags of 0–50 samples (0–0.4 s). The broadband events exhibited a

fast first zero-crossing of the autocorrelation function at a timelag of five samples

(0.04 s), in contrast to the chugging events that had a substantially slower decay to

zero at timelags 14–18 samples (0.112–0.144 s) (Figs. 3a, b). For both groups of

events AMI showed well-defined first minima (Figs. 3c, d) and in all cases the
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difference in the estimated delay time between the two methods was less than 1–2

samples (0.008–0.016 s).

Determination of the Embedding Dimension

The method used for the determination of the sufficient embedding dimension is

based on the property of chaotic attractors in that their orbits should not intersect or

overlap with each other. Such an intersection or overlap may result when the

attractor is embedded in a dimension lower than the sufficient one stated by the delay

embedding theorem. KENNEL et al. (1992) developed an algorithm that makes use of

Figure 3

Example of selection of the delay time. Diagrams (a)–(c) show the autocorrelation function and Average

Mutual Information (AMI) for a broadband event, while (b)–(d) show the same for a chugging event (see

text for more details).
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this property in order to estimate the sufficient dimension for phase space

reconstruction. Assuming that two points xa and xb are in proximity in the phase

space, this is so either because the dynamic evolution of the orbits brought them

close, or due to an overlap resulting from the projection of the attractor to a lower

dimension. By comparing the Euclidean distance of the two points jxa � xbj in two

consecutive embedding dimensions d and d þ 1, it is possible to decipher which of the

two possibilities is true. For embedding dimension m and delay time s these distances
are given by

R2
d ¼

Xd�1

m¼0
½saðt þ msÞ � sbðt þ msÞ�2 ð3Þ

moving from dimension d to d þ 1 means that a new coordinate equal to sðt þ dsÞ is
being added in each delay vector, so the Euclidean distance of the two points in

dimension d þ 1 will be

R2
dþ1 ¼ R2

dðtÞ þ jsaðt þ dsÞ � sbðt þ dsÞj2 : ð4Þ

The relative distance between the two points in dimensions d and d þ 1 will be the

ratio

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

dþ1 � R2
d

R2
d

s

¼ js
aðt þ dsÞ � sbðt þ dsÞj

Rd
: ð5Þ

If this distance ratio is greater than a predefined value s, then the points xa and xb are

characterized as ‘false’ neighbors (being in the same neighborhood because of the

projection and not because of the dynamics). An additional criterion for character-

izing two points as false neighbors is that Rdþ1 > r=s, where r is the standard

deviation of the data around its mean. Since r can be considered as a representative

measure of the size of the attractor, this criterion reflects the fact that if two points

are false neighbors they will be stretched to the extremities of the attractor when they

are separated from each other at dimension d þ 1. KENNEL et al. (1992) noted that a

false nearest-neighbor algorithm that does not implement this second criterion will

give an erroneous low embedding dimension even for high-dimensional stochastic

processes. The procedure outlined above is repeated for all pairs of points at higher

dimensions, until the percentage of the false neighbors becomes zero and then the

attractor is said to be unfolded.

In order to apply the method to the tremor time series a suitable value for the

distance ratio s had to be selected. ABARBANEL (1996) found that for many nonlinear

systems this value approaches 15. This result was also confirmed in a study of tremor

accompanying the 1996 Vatnajökull eruption in central Iceland, where s values in the

range of 9–17 were found to produce stable false neighbors statistics (KONSTANTINOU,

2002). Therefore we used an s value of 15 and the delay times estimated in the previous

section for calculating the percentage of false nearest-neighbours for each event.
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Aside from determining the sufficient embedding dimension, the false nearest-

neighbor method was also used as an indicator of the amount of noise in our data. As

a stochastic process, noise should have infinite degrees of freedom and therefore it

should show no tendency to unfold at any specific dimension. Thus we were able to

eliminate events that showed a non-zero percentage of false neighbors in dimensions

1–10. For the rest of the events considered in this study the application of the method

showed that for the broadband events the embedding dimension ranged 5–7 while for

most of the chugging events the dimension was 4 (Fig. 4). Figures 5 and 6 show phase

portraits of the reconstructed attractor for a broadband and a chugging event.

Figure 4

Top panel: Distribution of false nearest neighbors statistics for a broadband event in dimensions 1–10. The

embedding dimension is 7, since in dimensions 5 and 6 there is still a very small percentage (0.004%–

0.002%) of false neighbors. Lower panel: The same for a chugging event. The embedding dimension is 4,

since in dimension 3 there is still a percentage (0.001%) of false neighbors.

154 K. I. Konstantinou and C. H. Lin Pure appl. geophys.,



Estimation of Correlation Dimension

As mentioned earlier, the attractor resulting from the embedding procedure is a

fractal object and the estimation of its dimension forms a part of every successful

nonlinear time series analysis. The importance of the fractal dimension stems mainly

from two reasons: (1) it gives a measure of the effective degrees of freedom that are

present in the physical system under study; (2) it is a quantity that does not vary

under smooth transformations of the coordinate system (i.e., an ‘invariant measure’).

Even though there exists a number of definitions for the dimension of a fractal object

(Box-counting dimension, Information dimension, etc.), the correlation dimension

definition suggested by GRASSBERGER and PROCACCIA (1983) was found to be the

most efficient for practical applications. For an N number of points xn resulting from

the embedding and for distance values r, the correlation sum definition as modified

by THEILER (1990) is

CðrÞ ¼ 2

ðN � nminÞðN � nmin � 1Þ
XN

i¼1

XN

j¼iþnmin

Hðr � jxi � xjjÞ ð6Þ

where H is the Heaviside step function, with HðxÞ ¼ 0 if x � 0 and HðxÞ ¼ 1 for

x > 0. The quantity nmin (also known as ‘Theiler window’) represents the number of

points that must be excluded from the calculation of CðrÞ because they are

temporally correlated. The consequence of not including this correction in the

calculation of the correlation sum is that the correlation dimension obtained

Figure 5

Two-dimensional phase portrait of a broadband event reconstructed for s ¼ 5.
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subsequently would be erroneously low (THEILER, 1990). In the limit of an infinite

amount of data and for vanishingly small r, the correlation sum should scale like a

power law CðrÞ � rD and the correlation dimension is then defined as

dðN ; rÞ ¼ lnCðr;NÞ
ln r

: ð7Þ

Figure 6

Three-dimensional phase portrait of a chugging event reconstructed for s ¼ 14. For clarity only the first

22 s of the signal have been embedded. Since the percentage of false neighbors in dimension 3 is very small

for all chugging events, the attractor shown is almost unfolded. The structure near the center of the plot

represents the first harmonic oscillation cycles which later become unstable, giving rise to chaotic orbits

that move within a larger portion of the phase space.
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We calculated the correlation sum for our dataset using the delay times

determined in the previous section and for embedding dimensions 1–10. The

minimum value of r was equal to the maximum data interval divided by 1000, while

we chose a value for the Theiler window, recommended by KANTZ and SCHREIBER

(1996), of 500 (the data portion omitted in time units is tmin ¼ nminDt ¼
500� 0:008 ¼ 4 s, with Dt being the sampling interval).

The next step was to calculate dðN ; rÞ and plot it against r, so that scaling regions

in the plot could be identified by visual inspection (Fig. 7). In theory, it is expected

that for a low-dimensional chaotic sytem, each curve representing an embedding

dimension equal or higher to the sufficient one should saturate at a particular value

Figure 7

Top panel: Slope of the correlation sum dðN ; rÞ versus r for a broadband event showing a scaling region

around r ¼ 2000. The saturation effect is clear after dimension 5. Lower panel: The same for a chugging

event showing a scaling region for r ¼ 9000–11000. Here the saturation effect is clear after dimension 3.

Vol. 161, 2004 Nonlinear Analysis of Sangay Tremor 157



of dðN ; rÞ. This value may then be interpreted as the correlation dimension v of the

system. Broadband events exhibited correlation dimension values in the range 2.4–

3.5, while for all chugging events the values were lower (1.8–2.6) except from event 11

that showed no clear scaling region. All events excepting 1 and 8 yielded dimension

estimates not higher than the maximum implied by the embedding theorem v < m=2,
which shows that the false nearest neighbors method gives in most cases a reliable

estimate of the embedding dimension.

An issue that is raised in all studies that attempt to estimate the correlation

dimension from a time series, concerns the minimum number of points needed for

this estimation to be meaningful. RUELLE (1990) showed that a necessary condition

for a reliable estimation of v is that v � 2 logN where N is the number of samples

used in the calculation. It can be easily verified by substituting the appropriate N
values for each event that the quantity 2 logN is in the range 8.121–8.602 and is

always larger than the estimated correlation dimensions.

However, URQUIZÚ and CORREIG (1998) reported that subsequently Ruelle

(unpublished work) recognized that this condition, even though it is necessary, may

not be sufficient. A supplementary condition is that the best number of data points is

reached when each axis of the embedding phase space contains a minimum of 10

independent values, so that in total the minimum number of samples should be 10m

with m being the embedding dimension. This means that for the chugging events

where m ¼ 4 the minimum number of points is 104 and since the lengths of the time

series is in the range of 13,750–31,250 samples, this condition is also satisfied. For the

broadband events it is obvious that the available samples (11,500–23,750) are far

fewer than the large minimum numbers (105, 106, 107) implied by the sufficient

condition for m ¼ 5, 6, 7. We accept therefore that these dimension estimates are

characterized by a degree of uncertainty.

Estimation of the Largest Lyapunov Exponent

Exponential divergence of nearby orbits in phase space is recognised as the

hallmark of chaotic behavior (DRAZIN, 1994). If we again take two points in the

phase space xn1 and xn2 and indicate their distance as jxn1 � xn2 j ¼ d0 then after time t
it is expected that the new distance d will be equal to d ¼ d0ekt, where k > 0 is called

the Lyapunov exponent. For a low-dimensional deterministic process the Lyapunov

exponent should be a positive finite number, for a linear process it should be zero and

for a stochastic process it should be infinite. In general, for an m-dimensional phase

space the rate of expansion or contraction of orbits is described for each direction by

a Lyapunov exponent, resulting in m different Lyapunov exponents of which some

are zero or negative. However, the main interest is focused on the largest of these

exponents since it can be calculated relatively easy and it yields evidence for the

presence of deterministic chaos in the observed data.
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ROSENSTEIN et al. (1993) proposed a method to calculate the largest Lyapunov

exponent from an observed times series. After reconstructing the phase space using

suitable values for s and m, a point xn0 is chosen and all neighbor points xn closer

than a distance r are found and their average distance from that point is calculated.

This is repeated for N number of points along the orbit so as to calculate an average

quantity S known as the stretching factor

S ¼ 1

N

XN

n0¼1
ln

1

jUxn0
j
X
jxn0 � xnj

 !
; ð8Þ

where jUxn0
j is the number of neighbors found around point xn0 . A plot of the

stretching factor S versus the number of points N (or time t ¼ NDt) will yield a curve

with a linear increase at the beginning, followed by an almost flat region. The first

part of this curve represents the exponential increase of S as more points from the

orbit are included, while the flat region signifies the saturation effect of exponential

divergence due to the finite size of the attractor. A least-squares line fit for the slope

of the linear part of the curve would then yield an estimation of the largest Lyapunov

exponent. ROSENSTEIN et al. (1993) used known chaotic systems in order to test their

algorithm and found that the largest Lyapunov exponents they obtained approx-

imated �10% of the correct value when the noise level, embedding parameters and

data length were varied within reasonable bounds.

We applied the method described above to both the broadband and the chugging

events, using the same embedding parameters as before. The value of r was taken as

the data interval divided by 1000, and again, in order to avoid temporal correlations

we used a Theiler window of 500. The curves for both groups of events showed the

expected linear increase/flat regions (Fig. 8) with some fluctuations superimposed on

the linear part of the curve, which for Event 1 were quite large and therefore no

attempt to fit a straight line was made. These fluctuations can be explained based on

the fact that the stretching factor is just an average of the local stretching or

shrinking rates in the attractor, therefore these different rates may not always be

smoothed by the averaging process of the algorithm (KANTZ and SCHREIBER, 1996).

The slope values corresponding to the largest Lyapunov exponent were obtained

after the least-squares line fit for the rest of the events. Table 3 summarizes the

estimated embedding parameters, correlation dimension values and largest Lyapu-

nov exponents for the events under study.

Discussion

Chaotic signals are characterized by at least one positive Lyapunov exponent and

a low-dimensional fractal attractor in the phase space. These characteristics have

been found in both broadband and chugging tremor signals recorded at Sangay, and
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Figure 8

Top panel: Estimation of the largest Lyapunov exponent using the method of ROSENSTEIN et al. (1993) for

a broadband event. The portion of the curve used for the least-squares line fit starts from the beginning

until the saturation point shown by the arrow. The dashed line represents the resulting least-squares line fit.

Lower panel: The same for a chugging event.

Table 3

Summary of the estimated delay time (s), embedding dimension m, correlation dimension v and largest

Lyapunov exponent (k) for each of the 12 tremor events under study

Event # s m v k

1 15 5 2.7 –

2 5 7 3.5 0.029

3 5 5 2.5 0.041

4 5 6 2.4 0.043

5 18 4 1.2 0.013

6 14 4 1.7 0.021

7 17 4 1.9 0.016

8 14 4 2.6 0.020

9 15 4 1.8 0.018

10 14 4 1.8 0.022

11 15 5 – 0.012

12 16 4 1.8 0.022
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at least their fractal dimension values (we are not aware of any other study in which

where an estimate of the largest Lyapunov exponent for tremor data is given) range

equally with those published by other authors (Table 1). This result is added to the

growing body of observational evidence that suggests that volcanic tremor sources

excited by possibly different physical mechanisms (e.g., magma flow in great depths

or gas exsolution in shallow depths), may generate low-dimensional signals with

similar phase space properties.

Another interesting result stemming from our analysis regards the phase space

properties of the broadband and chugging events. A comparison of the values of the

correlation dimension and largest Lyapunov exponent (Table 3) of the two groups

shows that the broadband events possess both larger correlation dimensions and

Lyapunov exponent values than the chugging events. On the other hand, chugging

events that contain a higher frequency content show higher dimensions and

Lyapunov exponent values than those events in which the integer overtones seem to

dominate.

Based on these observations it is only possible to derive a qualitative model of the

source that may be generating the observed signals. The low values of the correlation

dimension (1.8–3.5) suggest that a second-order nonlinear differential equation may

be enough to describe the Sangay tremor source. A large number of forced nonlinear

oscillators described by the general equation

€xxþ b _xxþ cgðxÞ ¼ f cos xt ; ð9Þ

where b is the damping coefficient, gðxÞ contains the nonlinear terms and f cos xt is
the forcing term, may be good candidates for such a modelling.

It can be shown theoretically (JORDAN and SMITH, 1987) that solutions of this

equation with a frequency which is an integer multiple of the forcing frequency x are

possible in the case of weak nonlinearity (jcj < 1) andmay correspond to the harmonics

observed in the chugging events. Furthermore, these solutions can become unstable in

the phase space through a series of repeated bifurcations as the parameters (b; c; f ;x)

start drifting. This would gradually change the spectral character of the signal to

broadband and also increase the Lyapunov exponent from an initial zero value (for a

purely harmonic behavior) to a positive number. This transition therefore may explain

the variable higher frequency content, largest Lyapunov exponents and correlation

dimensions observed in the recorded tremor events. Similar analogue modelling has

been suggested by GODANO and CAPUANO (1999) for low-frequency earthquakes

recorded at Stromboli andVulcano volcanoes in Italy. The authors noted the similarity

of the time domain and phase space characteristics of the observed data and the

solutions of the nonlinear oscillator described by equation (9) with gðxÞ ¼ � 1
2 ð1� x2Þ.

However, this kind of modelling leaves open a number of important issues. First,

the exact physical mechanism causing these nonlinear oscillations and the physical

meaning of the terms c and gðxÞ are uncertain. JOHNSON and LEES (2000) reported,

based on visual observations, the presence of rubble and rising viscous lava at the top
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part of the active vent. Assuming that there is unsteady gas flow inside the vent, they

suggest that this material may be acting as a kind of valve in a pressurized system,

regulating the escape of gas into the atmosphere in an oscillatory manner that results

in the generation of the observed signals. Second, the description of such a behavior

in terms of a system of coupled nonlinear differential equations will probably

introduce more numerous degrees of freedom than those implied by our analysis.

Therefore a means of compressing this number to a minimum, while maintaining the

same dynamics with the observations, should be found. Hopefully both of these

issues will be resolved in future theoretical modelling efforts.

Even though the results of the application of nonlinear time series analysis methods

to volcanic tremor events can tell us what kind of oscillatory behavior we are dealing

with (linear/nonlinear, stochastic/deterministic) and howmany degrees of freedom are

involved, they cannot provide a clue as to what the physical mechanism of this

oscillation is. Other methods, that can extract information concerning the physical

properties and geometrical configuration of the rock-fluid system from seismic and

acoustic data combinedwith visual observations, are needed in order to accomplish this

task. Future volcano monitoring efforts should, therefore, rely on a multidisciplinary

approach when trying to study the nature of volcanic tremor sources.
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URQUIZÚ, M. and CORREIG, A. M. (1998), Analysis of Seismic Dynamical Systems, J. Seismol. 2, 159–171.

(Received May 9, 2002, accepted October 21, 2002)

To access this journal online:

http://www.birkhauser.ch

Vol. 161, 2004 Nonlinear Analysis of Sangay Tremor 163


