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Abstract

We propose a new data analyzing scheme, the method of minimum entropy analysis (MEA). New MEA method provides a
quantitative criterion for selecting relevant variables to model the studied physical system. This method can be easily extended to
the analyses of various geophysical/geological data, where many relevant or irrelevant available measurements may obscure the
understanding of the highly complicated physical system like the occurrence of debris-flows. After demonstrating and testing the
MEA method, we apply this method to a dataset of debris-flow occurrences in Taiwan and successfully identify three relevant
variables, i.e. the hydrological form factor, landslide area, and number of landslides, to the occurrence of observed debris-flow
events by the 1996 Typhoon Herb.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Most geophysical/geological problems, e.g. the occur-
rence of debris-flows or earthquakes, are so complicated
that many observed and/or unobserved variables have
the obscure contributions to the geophysical/geological
systems (Rundle et al., 2000). From the viewpoint of
practical experiment setting, scientists often encounter the
problem of variables selection when choosing relevant
measurement to the studied physical systems. For
instance, three categories of variables describing three
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aspects of topography, geology, and hydrology, are
usually used in the geographic information system
(GIS) to assess the hazard potential of debris-flows (e.g.
Lin et al., 2002; Rupert et al., 2003). Although some
consensus could be reached for the issue of debris-flow
hazard assessment, the observed variables could be much
different among different research groups (Wieczorek and
Naeser, 2000). Therefore, when lots of measurement
could be probably made and available to use, we are
forced to face a fundamental question of which variables
are relevant to describe a highly complex physical system
like the debris-flow system.

To answer the abovementioned question, we introduce
a new data analyzing scheme, i.e. the minimum entropy
criterion (Tseng, 2006), to the problem of selecting the
variables which dominate the debris-flow occurrence. We

mailto:chencc@ncu.edu.tw
http://dx.doi.org/10.1016/j.enggeo.2007.06.004


20 C. Chen et al. / Engineering Geology 94 (2007) 19–26
first present the principle of minimum entropy analysis
(MEA) and verify its result when applied to a geological
example extracted from the textbook of Davis (2002).
Then, in Section 3, we demonstrate the application of
MEA to an observed debris-flow dataset (Lin et al., 2000),
consisting of the binary outcome (the response) of debris-
flow occurrences and measurement (the covariates) of
some topographic, geologic, and hydrologic variables.
Conclusions will be given at the end of this paper.

2. Minimum entropy rule for variables selection

2.1. Principle of minimum entropy analysis

Models selection in data processing is usually accom-
plished by ranking models according to some kind of
measure of preference. Several methods such as P-value,
Bayesian approach, and Kullback–Leibler distance, etc.,
could be used to provide the selection criteria (Weiss,
1995; Raftery et al., 1997; Forbes and Peyrard, 2003;
Dupuis and Robert, 2003; Tseng, 2006). Tseng (2006)
reviews those methods and suggests an entropy-based
criterion as the selecting preference of models.

The principle of maximum entropy proposed by
Jaynes (1957a,b, 2003) is recognized as a tool for as-
signing a probability distribution to a system. Inspired
by Shannon's axiomatic approach, Jaynes' tool in-
volves the use of a unique functional form of entropy
S½P� ¼ �P

x PðxÞlnPðxÞ, where x denotes the states of
the model and P is the probability density function. It
was further extended to become an inductive inference
tool in data processing for updating the probability
distribution of a system according to available infor-
mation (Skilling, 1989; Caticha, 2004). When a
reference density function μ(x) is available, it can be
shown that the approach of updating P(x) involves
another unique functional form of the relative entropy
S½Pjl� ¼ �P

x PðxÞlnðPðxÞ=lðxÞÞ (Tseng, 2006).
Furthermore, Tseng (2006) has also shown that the

relative entropy uniquely determines the preference for
models selection. Suppose a family of models are given
by the probability distributions {Pm(x)}, where m labels
the model. The preference is given by the scalar relative
entropy to a reference distribution μ(x) of a model Pm(x),

S½Pmjl� ¼ �
X
x

PmðxÞlnP
mðxÞ
lðxÞ : ð1Þ

This relative entropy measures the difference be-
tween the model Pm(x) and the reference distribution
μ(x) (Tseng, 2006). The larger the relative entropy S[Pm|
μ] is, the closer the gap between Pm(x) and μ(x) is.
If the real distribution function Preal(x) being able to
correctly interpret the system is chosen as the reference
distribution, a model Pm(x) with the maximum S[Pm|
Preal] will be the most preferable. Unfortunately, the real
distribution is usually difficult to be practically
determined. Tseng (2006) thus proposes ranking all
the candidate models by means of their values of the
relative entropy to a uniform distribution function Puni,
i.e. S[Pm|Puni]. A model Pm(x) with a maximum S[Pm|
Puni] carries little information about the studied system
since a uniform distribution does not carry any useful
information and a maximum of the relative entropy
indicates two distribution functions are identical. On the
other hand, when a model Pm(x) is codified with more
information, Pm(x) more differs from Puni and a smaller
relative entropy of S[Pm|Puni] would be expected.
Consequently, sorting S[Pm|Puni] of candidate models
in ascending order would give the preference to those
models with larger values of S[Pm|Preal].

In the case of variables selection, let's suppose that a
regression model P(x⇀) associated with N variables x⇀=
{x1, x2,…, xN} is used to reveal the behavior of an
unknown system by experimental measurements. For
example, the logit model is often used to investigate the
binary outcome of some systems (Johnson and Albert,
1999; Dupuis and Robert, 2003; Rupert et al., 2003).
Note that the variables xi are usually estimated by
experiment, and they may or may not be crucial
characteristics of the system interested. They may be
also correlated to each other. Then our question is that,
after modeling the system with various combinations of
variables, which ones play more important roles
allowing the model to best interpret the studied system.
Namely, what are the preferences of these variables?
This is basically the same question addressed in the
course of models selection (Tseng, 2006).

Suppose that a full model defined by Pf (x⇀)=P(x⇀)
contains all the N variables available from experiment.
For a set of N variables there will be (2N−2)
combinations (subsets) of variables x⇀si∈x⇀. Each subset
of variables forms a sub-model with a distribution Ps

(x⇀si)=P(x
⇀
si). Replacing Pm(x) and μ(x) in Eq. (1) by Ps

(x⇀si) and Puni, respectively, the preference of the sub-
model is thus given by decreasing the relative entropy

S½PsjPuni� ¼ �
X
xtsi

a xt
PsðxtsiÞln

PsðxtsiÞ
Puni

¼ S½Ps� þ lnPuni;

ð2Þ

where the sub-model Ps(x⇀si) contains ni variables and
S½Ps� ¼ �P

xt
sia xt

PsðxtsiÞlnPsðxtsiÞ. Since lnPuni is constant,



Table 1
Chemical analyses of brines (in ppm) recovered from drillstem tests of
three carbonate rock units (Ellenburger Dolomite, Grayburg Dolomite =
Unit G, Viola Limestone) in Texas and Oklahoma

Unit G HCO3 SO4 Cl Ca Mg Na

N 10.4 30 967.1 95.9 53.7 857.7
N 6.2 29.6 1174.9 111.7 43.9 1054.7
N 2.1 11.4 2387.1 348.3 119.3 1932.4
N 8.5 22.5 2186.1 339.6 73.6 1803.4
N 6.7 32.8 2015.5 287.6 75.1 1691.8
N 3.8 18.9 2175.8 340.4 63.8 1793.9
N 1.5 16.5 2367 412 95.8 1872.5
Y 25.6 0 134.7 12.7 7.1 134.7
Y 12 104.6 3163.8 95.6 90.1 3093.9
Y 9 104 1342.6 104.9 160.2 1190.1
Y 13.7 103.3 2151.6 103.7 70 2054.6
Y 16.6 92.3 905.1 91.5 50.9 871.4
Y 14.1 80.1 554.8 118.9 62.3 472.4
N 1.3 10.4 3399.5 532.3 235.6 2642.5
N 3.6 5.2 974.5 147.5 69 768.1
N 0.8 9.8 1430.2 295.7 118.4 1027.1
N 1.8 25.6 183.2 35.4 13.5 161.5
N 8.8 3.4 289.9 32.8 22.4 225.2
N 6.3 16.7 360.9 41.9 24 318.1

Adapted from Davis (2002).
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ranking order given by decreasing S[Ps|Puni] is
identical to ranking by decreasing S[Ps]. The selection
of variables, then, can be made from the analysis of the
preference of sub-models.

Before illustrating the detailed process in the
following, a remark has to be made. The proposed
MEA method ranks variables according to the prefer-
ences of corresponding sub-models Ps(x⇀si). It thus
suggests that the MEA can always give correct ranking
as long as the variables can be correctly codified into a
sub-model Ps(x⇀si) even though some of the variables
may be redundant.

2.2. Demonstration and verification of minimum
entropy analysis

We test our data processing procedure of the MEA
method with an example of samples classification
extracted from the book of Davis (2002). Table 1 contains
the results of brine analyses for oil-field waters from three
groups of carbonate units in Texas and Oklahoma. Brines
recovered during drillstem tests of wells may have
remanent compositional characteristics that provide
clues to the origin or depositional environment of their
source rocks. The first column in Table 1 denotes brine
samples belonging or not belonging to some specific
carbonate unit, i.e. Grayburg Dolomite (briefly in “Unit
G” here), while the rest are the percentages of six chemical
ions. Davis (2002) applied the discriminant function
analysis (DFA) to these six multivariate measurements for
finding a projection, i.e. a linear combinations of
measurements, allowing distinguishing various categories
of samples. The first discriminant function thus calcu-
lated is (−0.3765, −0.0468, 0.0112, −0.0148, −0.0174,
−0.0110)·(HCO3, SO4, Cl, Ca, Mg, Na)T, which can
clearly separate samples of Unit G from other units. Note
that the weighting factors in the first discriminant function
of the variables of HCO3 and SO4, i.e. −0.3765 and
−0.0468, represent the first two largest factors in mag-
nitude among six, indicating these two variables play the
most dominant effect in classification.

By means of our entropy-based procedure, can we
identify the relevant variables to the problem of
determining the category of samples in Table 1?

Let's consider the response to be the binary outcome
belonging (“Yes” or “1”) or not belonging (“No” or “0”)
to Unit G and the covariates these percentages of six
chemical ions in Table 1. We can apply the logit model
(Johnson and Albert, 1999; Dupuis and Robert, 2003)

Rð xtÞ ¼
expðXN

i¼1

bixiÞ
1þ expðPN

i¼1
bixiÞ ð3Þ

to relate the response to the covariates. After normal-
izing Eq. (3), the probability distribution of the response
associated with a given subset of all the six variables is

Pð xtÞ ¼ Rð xtÞ=Z ¼ 1
Z

expðXN
i¼1

bixiÞ
1þ expðPN

i¼1
bixiÞ ; ð4Þ

where Z ¼ P
xt

expð
PN

i¼1
bixiÞ

1þexpð
PN

i¼1
bixiÞ

� �
is a normalization constant.

Note that the coefficients βi could be determined through
fitting the logit model to experimental measurements by
the maximum likelihood estimation (Johnson and Albert,
1999). Thus the entropy of P(x⇀si) related with a subset of
variables x⇀si∈x⇀ could be calculated and gives the
ranking order of a sub-model P(x⇀si) defined by Eq. (4).

In the example of brine data there are 62 sub-models.
As shown in Table 2, we found that 16 sub-models out
of 62 have the minimum entropy value of ∼1.7918
while the rest of the sub-models (not shown in Table 2)
have the entropy larger than 2. The MEA suggests that
these 16 sub-models are the most preferable. Yet, due to
intrinsically limited precision of measured data, we can
not distinguish the preferences for these 16 sub-models
further. For tackling the resolution issue of the entropy
resulted from intrinsic data precision, there are many



Table 2
Entropy (S) for sixteen sub-models with different combinations of six
variables in Table 1 (A = HCO3, B = SO4, C = Cl, D = Ca, E =Mg, and
F = Na)

A B C D E F S

1 1 1 0 1 1 1.79183823
1 1 1 1 0 1 1.79183829
1 1 0 1 1 1 1.79183836
1 1 1 1 1 0 1.79183836
1 1 0 1 1 0 1.79184075
1 1 0 0 1 1 1.79184177
1 1 1 0 1 0 1.79184215
1 1 1 0 0 1 1.79184241
1 1 0 0 1 0 1.79184396
1 1 0 1 0 1 1.79184653
1 1 1 1 0 0 1.79184701
1 0 1 1 1 1 1.79184888
1 1 0 1 0 0 1.79184968
1 1 1 0 0 0 1.79185471
1 1 0 0 0 1 1.79185668
1 1 0 0 0 0 1.79185738

“1” or “0” denotes the variable selected or not selected in each sub-
model.

Table 3
Debris-flow occurrences of 22 creeks during the 1996 Typhoon Herb
in Hsin-Yi area of the Nantou County, Central Taiwan, together with
their corresponding characteristics including gully lengths (Le), areas
of drainage basin with slope N15° (Ad), form factor (Ff=Ad/Le2) and
numbers (Nl) and areas (Al) of landslides

Gully
No.

Debris-flow
occurrence

Le
[m]

Ad
[km2]

Ff Nl Al
[km2]

1 No 1505 0.86 0.3797 0 0
2 Yes 1876 1.27 0.3609 3 10.9
3 Yes 1640 0.35 0.1301 2 4.5
4 Yes 1560 0.57 0.2342 3 3.4
5a Yes 2158 1.82 0.3908 5 3.7
5b Yes 1035 1.82 1.6990 1 7.8
6a Yes 582 3.4 10.0377 5 3.7
6b Yes 2445 3.4 0.5687 4 4.4
7 Yes 2685 3.5 0.4855 9 8.4
8 No 2350 1.97 0.3567 0 0
9 No 142 1.15 57.0323 4 2.7
10 No 1349 1.55 0.8517 4 2.9
11 No 1337 0.74 0.4140 4 1.2
12 No 911 0.72 0.8676 3 0.8
A Yes 2048 0.78 0.1860 5 0.086
B Yes 2960 2.18 0.2488 6 0.226
C No 2010 1.65 0.4084 6 0.061
D1 Yes 675 0.58 1.2730 1 0.033
D2 Yes 4947 2.24 0.0915 13 0.362
E No 3185 4.05 0.3992 4 0.045
F Yes 4209 6.63 0.3742 7 0.084
G Yes 4444 6.93 0.3509 21 0.371

Adapted from Lin et al. (2000).
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possible ways (e.g. Dupuis and Robert, 2003) to
determine the most dominant variables in this example.
Here we simply count the frequencies of six variables
appearing in these 16 sub-models. It turns out that the
frequencies for two variables of HCO3 and SO4 are 16
and 15, respectively, and 8 for the rest of variables. This
result suggests the ability interpreting the measurement
in the logit model is strongly dominated by involving
simultaneously two variables of HCO3 and SO4 in the
model. Therefore the MEA result is quite consistent
with the DFA result. Comparing both results of the DFA
and MEA procedures helps the understanding of our
entropy-based technique and enhances confidence in
this MEA tool.

3. Application of minimum entropy analysis to the
debris-flow hazard assessment

Locating at an active convergent plate boundary, the
Island of Taiwan is rugged in relief and severe in erosion
by the weather. After the heavy rainfalls brought by
typhoons, the occurrence of the debris-flow often results
in enormous damage of lives and buildings (Chen et al.,
1997; Lin and Jeng, 2000; Lin et al., 2002, 2003; Jan
and Chen, 2005). There are absolutely many factors
affecting intricately the occurrence of the debris-flow
and various measurement in the field has been
conducted to assess the occurrence potential of the
debris-flow in Taiwan (Chen et al., 2000; Lin et al.,
2000; Wieczorek and Naeser, 2000; Chen and Su, 2001;
Lin et al., 2002, 2003; Jan and Chen, 2005). Can we
figure out the observations relevant to the occurrence of
the debris-flow by means of our MEA procedure?

To preliminarily apply the MEA method we have
used a relatively small dataset (Table 3) published in Lin
et al. (2000), documenting the occurrence of the debris-
flows in the Hsinyi area of Nantou County, Central
Taiwan, during the 1996 Typhoon Herb. As shown in
Fig. 1 is a geological map (CGS, 2000) and drainage
system in the Hsinyi area. Eocene–Oligocene metamor-
phic rocks are thrusting over the Miocene rocks along
the Chenyeolanchi Fault. The Chenyeolan River is the
major river flowing through the Hsinyi area which is
closely related to the Chenyeolanchi Fault. Gullies
selected by Lin et al. (2000) in the Shinshan (No. 1–12)
and Shenmu (No. A–G) areas are also shown in Fig. 1.
In Shinshan area, the outcropped Oligocene metamor-
phic strata in the catchments of Gullies 1–6 are the
Shuichangliu Formation (OS) mainly composed of
thick-bedded argillites and slates with thin-bedded
meta-sandstone. The outcropped Miocene sedimentary
strata in the catchments of Gullies 7–12 are the Nankang
Formation (M2) composed of thick- to thin-bedded fine-



Fig. 1. Geological map (CGS, 2000) and drainage system in the Hsinyi area of Nantou County, Central Taiwan. The Chenyeolan River is the major
river flowing through the Hsinyi area which is closely related to the Chenyeolanchi Fault. In Shinshan area, the Oligocene metamorphic strata
outcropped in the catchments of Gullies 1–6 and the Miocene sedimentary strata in the catchments of Gullies 7–12. In Shenmu area, the Miocene
sedimentary strata outcropped in the catchments of Gullies A–G.
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Table 4
Entropy (S) for total thirty sub-models with different combinations of
five variables in Table 3 (A = Le, B = Ad, C = Ff, D = Nl, and E = Al)

Sub-model No. A B C D E S

1 0 1 1 1 1 2.9346
2 1 0 1 1 1 2.9351
3 0 0 1 1 1 2.9355
4 1 1 1 0 1 2.9538
5 1 1 0 1 1 2.9542
6 1 0 1 0 1 2.9542
7 1 0 0 1 1 2.9557
8 1 0 0 0 1 2.9649
9 1 1 0 0 1 2.9653
10 0 1 0 1 1 2.9725
11 0 0 0 1 1 2.9738
12 0 1 1 0 1 2.9747
13 0 0 1 0 1 3.0065
14 0 1 0 0 1 3.0117
15 1 1 1 1 0 3.0240
16 1 0 1 1 0 3.0279
17 0 1 1 1 0 3.0289
18 0 0 1 1 0 3.0296
19 1 1 1 0 0 3.0446
20 0 1 1 0 0 3.0447
21 0 0 0 0 1 3.0447
22 1 0 1 0 0 3.0498
23 1 1 0 1 0 3.0550
24 1 0 0 1 0 3.0550
25 0 1 0 1 0 3.0560
26 0 0 0 1 0 3.0570
27 0 0 1 0 0 3.0607
28 1 1 0 0 0 3.0632
29 1 0 0 0 0 3.0638
30 0 1 0 0 0 3.0726

“1” or “0” denotes the variable selected or not selected in each sub-
model.
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grained calcareous sandstone, dark gray shale and
siltstone. In Shenmu area, the outcropped Miocene
sedimentary strata in the catchments of Gullies A–G are
the Nankang Formation (M2) and the Nanchung
Formation (M3). The Nanchung Formation is mainly
composed of thick-bedded to massive sandstone inter-
layered with thick- to thin-bedded shale.

Five variables (Table 3) presented in Lin et al. (2000)
for the gullies include (1) the gully lengths (Le), (2)
areas of drainage basin with the slope N15° (Ad), (3)
form factor (Ff=Ad/Le2), (4) numbers (Nl) and (5) areas
(Al) of landslides, which implicitly reflect the topo-
graphic, geologic, and hydrologic characteristics of the
gullies. Takahashi (1978) suggested that the debris
deposited on the gully with a slope angle N15°
contributes the material to the occurrence of debris-
flow. Consequently, the factor of areas of drainage
basins with the slope angle N15° was selected in Lin
et al. (2000). The landslides and debris-flow occur-
rences were identified through the field investigation
and interpretation of aerial photos with a scale of about
1:15,000 to 1:22,000 taken before and after the Typhoon
Herb. The other variables were derived from the
topographic map with a scale of 1:25,000. For the
detailed description of those observations, please refer
to the paper of Lin et al. (2000).

Rupert et al. (2003) utilized a logistic regression to
predict the probability of the debris-flow occurrence,
and their results show that the logistic regression is
useful to the debris-flow prediction. Therefore, we also
utilize the logit model to relate the binary outcome of the
debris-flows with those five covariates in Table 3 (the
last five columns). Following the MEA procedure
demonstrated in Section 2.2, we find 3 out of 30 sub-
models, i.e. Sub-models 1, 2 and 3, having the minimum
entropy of ∼2.93 as shown in Table 4. The problem of
the entropy resolution also appears in this case. Two
strategies are useful in determining the relevant
variables through the entropy calculations of these
sub-models. We have listed in Table 4 all the calculated
entropy of 30 sub-models for the debris-flow data. The
entropy value ranges between 2.9346 and 3.0726, and
the difference in entropy is about 0.138. When the
resolution level in entropy is assigned 10%, which could
be related to the precision in measurement, the first 3
sub-models can be thus discriminated from the rest of
sub-models with the entropy values N2.95. The entropy
difference between Sub-model 4 and the first 3 sub-
models is larger than 10% of 0.138. On the other hand,
according to the debris-flow data shown in Table 3, it
seems fairly conservative to consider the measurement
precision to be three significant figures. Note that, in
Table 3, there are four significant figures for the factor
of Le, three for Ad and four for Al. Therefore, the
significant figure in entropy is truncated to two decimal
places and, again, we can conclude the first 3 sub-
models with the minimum entropy of ∼2.93 are the
most preferable.

Three variables of the form factor, numbers and areas
of landslides (Columns C, D and E in Table 4) are
involved into all the first 3 sub-models with the
minimum entropy of ∼2.93, meaning that these three
variables are important to the debris-flow hazard
assessment in the study area. We have noticed that the
same watershed in the Central Taiwan was indepen-
dently studied in the papers of Lin et al. (2000, 2002),
and the observation spans of the debris-flow occur-
rences are same after the 1996 Typhoon Herb. It is
therefore interesting to compare our MEA result with
the assessing variables used by Lin et al. (2002). In the
paper of Lin et al. (2002), an overall debris-flow hazard
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index is derived from the sophisticated GIS analysis of
nine factors, i.e. the rock formation, fault length,
landslide area, slope angle, slope aspect, stream slope,
watershed area, form factor and C factor. For the
detailed explanation of those factors, please refer to the
paper of Lin et al. (2002). Although the data presented in
Lin et al. (2000), as mentioned above, is only a relatively
small dataset, two variables of the form factor and
landslide area are in agreement selected to be the
important factors for assessing the debris-flow occur-
rence in both our MEA result and the GIS analysis in
Lin et al. (2002). This indicates a fairly good
performance of our newMEA procedure. One important
fact is that, while the reason for the selection of those
nine factors in Lin et al. (2002) is quite subjective, as
they mentioned in their paper, our MEA procedure
straightforwardly provides a quantitative criterion in the
variables selection for the debris-flow hazard
assessment.

We have further compared the predicting perfor-
mance of the full model with all five observed factors
and two sub-models, i.e. 3 and 28 in Table 4, by the
Relative Operating Characteristic (ROC) diagram
(Fig. 2). The ROC diagram is a well-established way
to examine the performance of model predictor (e.g.
Chen et al., 2005, 2006). A ROC graph is a plot with the
false alarm rate (FAR) on the horizontal axis and the hit
rate (HR) on the vertical axis. The HR is the fraction of
positive occurrences of debris-flows that were correctly
predicted to be occurred, while the FAR is the fraction of
non-occurrence cases that were incorrectly predicted as
the positive occurrence. The point (0, 1), which means
the FAR is 0 and the HR is 1, on an ROC graph is the
Fig. 2. ROC curves of the full model and sub-models 3 and 28 in
Table 4. A larger area under the ROC curve indicates higher skill of the
model predictor. For the details please see the text.
perfect predictor. It predicts all occurrences and non-
occurrences of events correctly. In many cases, a model
predictor has a probability threshold that can be adjusted
to increase HR at the cost of an increased FAR or
decrease FAR at the cost of a decrease in HR. For
example, for the full model, the pair of (0, ∼0.65) could
be obtained by using a probability threshold larger than
∼0.76. Lowering the threshold to ∼0.25, we obtained
another pair of (∼0.63, ∼0.93). Each probability
threshold setting provides a (FAR, HR) pair and a series
of such pairs can be used to plot an ROC curve. In the
ROC diagram, a larger area under the ROC curve
indicates higher skill of the model predictor. Therefore,
based on the ROC curves of the full model and sub-
models 3 and 28 (Fig. 2), it can be seen that the
prediction performance of sub-model 3 is significantly
better than sub-model 28 and slightly over the full
model. However, note that only three preferred factors
selected by the above MEA procedure is used in sub-
model 3 while all five measurements are involved in the
full model.

Regarding the variable of landslide number, our
MEA procedure then raises an open issue about whether
it really does matter to the occurrence of the debris-
flows. We postpone to future work the examination of
this issue.

4. Concluding remark

In the course of data analyses two fundamental
questions are commonly queried. What is the pertinent
model to interpret best the experimental measurement
for understanding the investigated physical system?
And, what are the important variables that should be
involved in the model? One may be able to reveal the
nature and characteristics of the investigated system
through answering these two questions. For addressing
the first question, unfortunately, there are no systema-
tical methods. It is usually resolved through the ways of
trials and errors, doing empirical regression, and giving
some intuitive assumptions etc. Therefore we focus on
addressing the second question in this paper. Our
proposed MEA procedure represents a systematical
scheme to tackle the second issue. We establish,
demonstrate, and test our MEA procedure by studying
two geo-scientific examples in this paper. The MEA
procedure, then, can satisfactorily provide a quantitative
criterion for selecting the relevant variables in both
examples.

The MEA procedure seems simple and straightfor-
ward. It is thus expected that the MEA procedure could
be easily extended and applied to various geophysical/
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geological data analyses, where many relevant or
irrelevant observations could be possibly made and
obscure the understanding to a highly complicated
physical system. The occurrence of debris-flows is such
an example. Here we would also like to emphasize that
the MEA procedure only provides an honest way to
extract the most important information from dazzling
data available. The entropy resolution of the MEA
method is restricted to the precision and the correctness
of measurement, which means the data themselves
could be incorrect and the observations could be
conducted in ill condition.

Acknowledgements

The authors thank two anonymous reviewers and the
editor for their helpful suggestions to improve our paper.
CCC is grateful for research support from both the
National Science Council (ROC) and the Institute of
Geophysics (NCU, ROC). Research by CYT was
funded by grant from the NSC, ROC. Thanks are also
extended to Owen Huang at Indiana University (USA)
for correcting the English usage and to Shawn Huang at
NCU for producing Fig. 1.

References

Caticha, A., 2004. Relative Entropy and Inductive Inference. In:
Erickson, G., Zhai, Y. (Eds.), Bayesian Inference and Maximum
EntropyMethods in Science and Engineer, vol. 707. AIP, NewYork.

CGS (Central Geological Survey), 2000. Geologic Map of Taiwan
1:500,000, Central Geological Survey, MOEA, Taiwan.

Chen, H., Su, D.Y., 2001. Geological factors for hazardous debris
flows in Hoser, central Taiwan. Environmental Geology 40,
1114–1124.

Chen, J.D., Wu, H.L., Chen, L.J., 1997. A comprehensive debris flow
hazard mitigateion program in Taiwan. In: Chen, C.L. (Ed.),
Proceedings of 1st International Conference on Debris-flow
Hazards Mitigation: Mechanics, Prediction, and Assessment.
Am. Soc. Civil Engineers, New York, pp. 93–102.

Chen, J.D., Su, R.R., Wu, H.L., 2000. Hydrometeorological and site
factors contributing to disastrous debris flows in Taiwan. In:
Wieczorek, G.F., Naeser, N.D. (Eds.), Debris-flow Hazards
Mitigation: Mechanics, Prediction, and Assessment. A.A. Balk-
ema, Rotterdam, Netherlands, pp. 583–592.

Chen, C.C., Rundle, J.B., Holliday, J.R., Nanjo, K.Z., Turcotte, D.L., Li,
S.C., Tiampo,K.F., 2005. The 1999Chi-Chi, Taiwan, earthquake as a
typical example of seismic activation and quiescence. Geophys. Res.
Lett. 32 (22), L22315. doi:10.1029/2005GL023991.

Chen, C.C., Rundle, J.B., Li, H.C., Holliday, J.R., Nanjo, K.Z.,
Turcotte, D.L., Tiampo, K.F., 2006. From tornadoes to earth-
quakes: forecast verification for binary events applied to the 1999
Chi-Chi, Taiwan, earthquake. Terr. Atmos. Ocean. Sci. 17,
503–516.

Davis, J.C., 2002. Statistics and Data Analysis in Geology, 3rd. Ed.
Wiley, New York.

Dupuis, J.A., Robert, C.P., 2003. Variable selection in qualitative
models via an entropic explanatory power. J. Stat. Plan. Inference
111, 77–94.

Forbes, F., Peyrard, N., 2003. Hidden Markov random field model
selection criteria based on mean field-like approximations. IEEE
Trans. Pattern Anal. Mach. Intell. 25 (9), 1089–1101.

Jan, C.D., Chen, C.L., 2005. Debris flows caused by Typhoon Herb in
Taiwan. In: Jakob, M., Hungr, O. (Eds.), Debris-flow Hazards and
Related Phenomena. Springer, New York, pp. 539–563.

Jaynes, E.T., 1957a. Information theory and statistical mechanics.
Phys. Rev. 106, 620–630.

Jaynes, E.T., 1957b. Information theory and statistical mechanics II.
Phys. Rev. 108, 171–190.

Jaynes, E.T., 2003. Probability Theory: The Logic of Science.
Cambridge University Press, Cambridge, UK.

Johnson, V.E., Albert, J.H., 1999. Ordinal Data Modeling. Sringer,
New York.

Lin, M.L., Jeng, F.S., 2000. Characteristics of hazards induced by
extremely heavy rainfall in Central Taiwan: Typhoon Herb. Eng.
Geol. 58, 191–207.

Lin, C.W., Wu, M.C., Shieh, C.L., Shieh, Y.C., 2000. Influence of
geology on debris-flows: examples from Hsin-Yi, Nantou County,
Taiwan. In: Wieczorek, G.F., Naeser, N.D. (Eds.), Debris-flow
Hazards Mitigation: Mechanics, Prediction, and Assessment. A.A.
Balkema, Rotterdam, Netherlands, pp. 169–176.

Lin, P.S., Lin, J.Y., Hung, J.C., Yang, M.D., 2002. Assessing debris-
flow hazard in a watershed in Taiwan. Eng. Geol. 66, 295–313.

Lin, C.W., Shieh, C.L., Yuan, B.D., Shieh, Y.C., Liu, S.H., Lee, S.Y.,
2003. Impact of Chi-Chi earthquake on the occurrence of
landslides and debris flows: example from the Chenyulan River
watershed, Nantou, Taiwan. Eng. Geol. 71, 49–61.

Raftery, A.E., Madigan, D., Hoeting, J.A., 1997. Bayesian model
averaging for regression models. J. Am. Stat. Assoc. 92, 179–191.

Rundle, J.B., Klein, W., Tiampo, K.F., Gross, S.J., 2000. Linear pattern
dynamics in nonlinear threshold systems. Phys. Rev., E Stat. Phys.
Plasmas Fluids Relat. Interdiscip. Topics 61 (3), 2418–2431.

Rupert, M.G., Cannon, S.H., Gartner, J.E., 2003. Using Logistic
Regression to Predict the Probability of Debris Flows Occurring in
Areas Recently Burned by Wildland Fires. Open-file Report OF
03-500US Geological Survey.

Skilling, J., 1989. Maximum Entropy and Bayesian Methods. Kluwer,
Dordrecht.

Takahashi, T., 1978. Mechanical characteristics of debris flow.
J. Hydraul. Div. 104 (HY8), 1153–1169.

Tseng, C.Y., 2006. Entropic criterion for model selection. Physica, A
370, 530–538.

Weiss, R.E., 1995. The influence of variable selection: a Bayesian
diagnostic perspective. J. Am. Stat. Assoc. 90, 619–625.

Wieczorek, G.F., Naeser, N.D., 2000. Debris-flow Hazards Mitigation:
Mechanics, Prediction, and Assessment. A.A. Balkema, Rotter-
dam, Netherlands.

http://dx.doi.org/10.1029/2005GL023991

	New entropy-based method for variables selection and its application to the debris-flow hazard .....
	Introduction
	Minimum entropy rule for variables selection
	Principle of minimum entropy analysis
	Demonstration and verification of minimum entropy analysis

	Application of minimum entropy analysis to the debris-flow hazard assessment
	Concluding remark
	Acknowledgements
	References


