Continuous cores and a suite of geophysical measurements were collected in two scientific drill holes to understand physical mechanisms involved in large displacements during the 1999 Chi-Chi earthquake. Physical properties obtained from wire-line logs (including P- and S-wave sonic velocity, gamma ray, electrical resistivity, density and temperature) are primarily dependent on parameters such as lithology, depth, and fault zones. The average dip of bedding, identified from cores and FMI (or FMS) logs, is about 30 degrees towards SE. Nevertheless, local azimuthal variations and increasing or decreasing bedding dips appear across fault zones. A prominent increase of structural dip to 60°–80° below 1856 m could be due to deformation associated with propagation of the Sanyi fault.

A total of twelve fault zones identified in Hole A are located in the Plio-Pleistocene Cholan Formation, Pliocene Chinshui Shale, and Miocene Kueichulin Formation. The shallowest fault zone occurs at 1111 m depth (FZA1111). It is a 1-m gouge zone including 12 cm of thick indurate black material. We interpreted this zone as the slip zone during the Chi-Chi earthquake. FZA1111 was characterized by 1) bedding-parallel thrust fault with 30° dip; 2) the lowest resistivity; 3) low density, V_p and V_s; 4) high V_p/V_s ratio and Poisson’s ratio; 5) low energy and velocity anisotropy, and low permeability within the homogeneous gouge zone; 6) increasing gas (CO_2 and CH_4) emissions; and 7) richness in smectite within the primary slip zone.

Introduction

The 1999 Chi-Chi earthquake (M_w 7.6) produced a >90-km-long surface rupture zone along the north-south trending, west-vergent Chelungpu fault. The most striking feature of the coseismic displacement field is that areas of large surface displacement lie above the footwall ramp of the thrust and at the northern termination (up to 12 m). An important question that needs to be addressed is what physical properties or dynamic processes within the fault zone cause large coseismic displacements in the northern segment. Hypotheses that have been proposed include 1) change of the fault-plane geometry (Yue et al., 2005); 2) static (long-term) physical properties such as intrinsic low coefficient of friction, high pore-pressure, and solution-transport chemical processes; and 3) dynamic change of physical properties during slip. To address the above
questions two holes (A and B) were drilled for the Taiwan Chelungpu Fault Drilling Project (TCDP) during 2004–2005 at Dakeng, west-central Taiwan, where large surface slip (~10 m) was observed. Continuous coring and geophysical down-hole logging in two holes 40 meters apart were completed from a depth of 500–2003 m (Hole A) and 950–1350 m (Hole B). Data from the drilled holes provide a unique opportunity to understand deformation mechanisms and physical properties of the Chelungpu fault where large slip occurred in the Chi-Chi earthquake.

Subsurface Structure and Fault-zone Characteristics

Subsurface structure, stratigraphy, and corresponding log depth encountered in Hole A are shown in Fig. 1. Regional bed attitude above FZA1712, identified from cores and FMI/FMS images in Hole A and from correlation of fault zones between Hole A and Hole B, is trending N15°–21°E, dipping 20°–40° (30° on average) toward SE. Nonetheless, intervals of increasing (from 30° to 75°) or decreasing (from 70° to 20°) dip, as well as changes of dip azimuth, appear across fault zones. A gradual increase of bedding dip with depth starts from FZA1712, and a drastic change of dip from 20°–40° to 60°–80° occurs across FZA1855 where steep to overturned beds extend to the bottom hole.

Common fault rocks in the cores include intensely deformed fault core (clayey gouge) and adjacent highly fractured damage zones (fault breccia). The fault gouge is composed of ultra-fine-grained clay minerals and massive to foliated fabrics; occasionally, thin layers of indurate black material appear within the gouge zone. A typical example is the Chelungpu fault zone, FZA1111 (Fig. 2). The fault is bedding-parallel consisting of fault breccia and fault gouge 1109 m to 1112 m. The degree of fracturing increases from the top of the damage zone towards the gouge zone in which the fabrics changed from massive to foliate between 1110.25 m and 1111.35 m. The Chi-Chi major slip zone (MSZ, about 2 cm thick) is contained within the 12-cm-thick primary slip zone (PSZ), which is located near the bottom of this broad gouge zone (Ma et al., 2006).

In spite of large surface displacements, no temperature anomaly was observed near FZA1111 due to circulation of mud immediately after the drilling. Nevertheless, Kano et al. (2006) reported a heat anomaly of 0.06°C during repeated temperature measurements 6 months after the completion of drilling.

In situ Stress Measurements

Leak-off test: A standard commercial procedure of open-hole, extended leak-off tests was conducted in Hole B at depths of 940 m and 1350 m to determine in situ magnitudes of maximum ($S_{H\text{max}}$) and minimum ($S_{H\text{min}}$) horizontal stresses. Successful leak-off tests have been done at four locations in Hole B—1279.6, 1179.0, 1085.0, and 1019.5 m—with two above and two below the FZB1137 (equivalent to...
strike-slip fault regime after the Chi-Chi earthquake in this area.

Wellbore failure: In situ stresses SH_max determined from borehole breakouts and drilling-induced tensile fractures from Hole A and Hole B (Fig. 4) show that a significant change of SH_max azimuth occurs across the depth of 1300 m (also a stratigraphic boundary between the Chihsui shale and the Kueichulin Formation). The SH_max was oriented at 103°–138° with an average of 123° in the section of 700–1300 m, as opposed to 137°–164° (154° on average) from 1300 m to 1700 m. Borehole breakouts are relatively better developed in the Kueichulin Formation than in other places. This observation agrees with stronger anisotropy (stress magnitude) in the Kueichulin Formation, as shown by the shear wave anisotropy.

Shear Seismic Wave Anisotropy

Data from Dipole-Shear Sonic Imager (DSI, mark of Schlumberger) logs acquired over the interval of 508–1870 m in Hole A were used to assess shear wave velocity anisotropy. Analyses at these depths are shown by scatter plots and rose diagrams for nine discrete intervals of similar
orientations of fast shear wave polarization (Fig. 5). A prominent NW-SE fast shear polarizing direction was generally observed except in a few depth zones, such as 738–770 m, 785–815 m, and 1517–1547 m. In particular, a very consistent mean direction with small dispersion of $115^\circ\pm1^\circ$–2° (95% confidence interval) appears in the strongly anisotropic Kueichulin Formation at 1300–1650 m. Relatively consistent fast shear polarization directions appear across FZA1111 (average 165° between 1105 m and 1115 m) compared to the interval of 1078–1190 m with trending in a much broader range of 130°–170°. Thus, there is no observable systematic change of trend on fast shear polarization across the Chi-Chi slip zone. On the other hand, from the change of fast shear azimuth at depth 1000 m and contrasting degree of anisotropy across the depth of 1300 m, the perturbation of regional stresses may have occurred within the upper and lower boundaries of the Chinshui Shale as suggested from detailed study of borehole breakouts (Wu et al, 2007).

References

Authors

Jih-Hao Hung, Department of Earth Sciences and Institute of Geophysics, National Central University, No. 300, Jhongda Road, Johngli City, Taoyuan County, 32001, Taiwan (R.O.C.), e-mail:jhung@earth.ncu.edu.tw.

Kuo-Fong Ma and Chien-Yin Wang, Department of Earth Sciences and Institute of Geophysics, National Central University, No. 300, Jhongda Road, Johngli City, Taoyuan County, 32001, Taiwan (R.O.C.).

Sheng-Rong Song, Department of Geosciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan (R.O.C.).

Weiren Lin and En-Chao Yeh, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), B200 Monobe, Nankoku, Kochi, 783-8502, Japan.