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Intermittent criticality in the long-range connective sandpile (LRCS) model
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We here propose a long-range connective sandpile model with variable connection probability Pc which
has an important impact on the slope of the power-law frequency-size distribution of avalanches. The
long-range connection probability Pc is changed according to an explicit function of the size of the latest
event, although the evolution rule of Pc may be different in various physical systems. Such version of the
sandpile model demonstrates large fluctuations in the dynamical variable 〈Z〉(t) (the spatially averaged
amount of grains retained within the grid at each time step), indicating the state of intermittent criti-
cality in the system. Many researches have suggested that the earthquake fault system is an intermittent
criticality system, which would imply some level of statistical predictability of great events. Our modified
sandpile model thus provides a testing ground for many proposed precursory measures related to great
earthquakes.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

In analogy to the study of critical phase transitions in statistical
physics, there had been attempts to approach earthquakes in the
context of a critical phenomenon [1–6]. The hope of revealing new
insights that would not be possible in the conventional perspective
gets even higher since the concept of self-organized criticality was
introduced in Bak et al. [7]. Earthquakes have then been treated as
an example of this phenomenon in nature [8–10], and the empiri-
cal Gutenberg–Richter law has been suggested to be the manifes-
tation of the self-organized critical state of the collective dynamics
of the earthquake faults. In addition to self-organized criticality in
which the system is always at or near critical state, intermittent
criticality, in which a system repeatedly approaches and retreats
from a critical state, had also been demonstrated in the work of
Sammis and Smith [11]. One center manifestation from it is the
time-dependent variations in the frequency-magnitude distribution
during a seismic cycle. To differentiate whether the Earth’s crust is
in a single self-organized critical state, or a composite intermittent
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criticality would be of fundamental importance for understanding
the statistics and the physics of earthquakes and be potentially en-
lightening in addressing the question of whether earthquakes can
be forecast [12–15].

The concept of intermittent criticality is based on the hypothe-
sis that a great earthquake on the fault network cannot occur until
regional criticality threshold has been reached and stress is conse-
quently correlated at all length scales up to the size of the region.
This great event then destroys the overall regional criticality on its
associated network. After a period of relative quiescence following
the great event, the dynamical process of the earthquake fault sys-
tem repeats by reloading energy and rebuilding correlation lengths
towards the criticality that leads to the next great event. The situa-
tion of intermittent criticality would imply some level of statistical
predictability of great events in the population dynamics whereas,
in the case of self-organized criticality, perpetually large stress cor-
relations reduce the degree of predictability of great events. Mod-
els exhibiting the intermittent criticality state include, for example,
the lossy and structurally heterogeneous automaton in Sammis and
Smith [11], the small-dissipation and large-neighborhood sandpile
model in Castellaro and Mulargia [13], and the discrete model of
faults with strength heterogeneities in Ben-Zion et al. [16] as well.
Here we would like to propose an alternative variant of the sand-
pile model with randomly internal connections [17] to demonstrate
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the state of intermittent criticality. Comparison between different
models will be also discussed in the end of this Letter.

2. Sandpile model with variable long-range connective
probability

We build our sandpile model by a very simple set of rules that
is very similar to the original one [7]. For a square grid of L by L
cells, we randomly throw sands, one at a time, onto the grid. In
the original sandpile model, once the total amount of the accumu-
lated sands within a single cell reaches the threshold amount of 4,
they will be redistributed to the four adjacent cells (the nearest
neighbors) or lost off the edge of the grid. All the cells receiving
grains from their neighbors will be checked, and the redistribu-
tion would be continued further away if any one of them reaches
consequently over the threshold too. For each throw of new grains,
the redistribution proceeds until none of the meshes receiving new
grains exceeds the threshold. The total amount of cells involved in
the redistribution process initiated by a single throw is defined to
be the size of the toppling event.

To implement randomly internal connections in the sandpile
model the redistribution process has been modified. Our modified
rule of randomly internal connections is very similar to the imple-
mentation of Watts and Strogatz [18]. For any particular cell, when
the accumulated grains exceed the threshold and redistribution oc-
curs, one of the original nearest neighbor connections confronts a
chance with the connective probability Pc , 0 < Pc < 1, of redirect-
ing to a randomly chosen, distant cell and so the original connec-
tion is replaced by a randomly chosen mesh that might be faraway
from the toppling cell. We may call such version of sandpile model
the long-range connective sandpile (LRCS) model. Apparently, when
Pc = 0, the LRCS model reduced to the original nearest neighbor
sandpile model by Bak et al. [7]. It has been found the connective
probability Pc has a significant impact on the scaling exponents of
the power-law frequency-size distributions in our modified LRCS
model [17].

According to Chen et al. [17], lower Pc implies higher activ-
ity of total toppling and lower scaling exponent of the power-
law frequency-size distribution. We thus presume that a possible
mechanism of Pc evolution is to reflect the contemporary top-
pling size, or the topographic change. The rationale is that when
the system is activated by a large event, there is higher proba-
bility to establish long-range random connection due to, for ex-
ample, increases of system permeability, fingerling channels of
pore pressure or the dynamic triggering of seismic waves. Par-
ticularly, seismicity increased in Long Valley Caldera following
the Mw (moment magnitude) = 7.9 2002 Denali Fault earthquake,
Mw = 7.1 1999 Hector Mine earthquake and Mw = 7.3 1992 Lan-
ders earthquake. The three main shocks were 3460, 400, and 440
km from Long Valley, respectively. As pointed out by previous
studies, e.g., [27], in these long-range triggering cases, the stress
perturbation of seismic waves is the immediate cause of the trig-
gered earthquakes. Although remote triggered seismicity has been
robustly documented for several large events and has now been
seen up to 4000 km from the main shock, the exact mechanism
for the dynamic triggering remains unclear. Whereas when the sys-
tem is cooled down with less activity, it gets into a healing stage
that the tectonic loading gradually shuts off most of the long-range
connections and thus reduces the Pc .

Consider the topographic height of the sandpile at the time step
i is Zi(x). At the next time step i + 1, due to the throw of single
grain on the grid, it changes from Zi(x) to Zi+1(x). Therefore, to-
tal change in the topographic height of the sandpile is �Zi+1 =∑

xl
|Zi+1(xl) − Zi(xl)|. Usually, on a square L by L grid, �Z ranges

from 1, which means no toppling occurs, to αL2 (α ∼= 1.25). We
then simply define Pc = (�Z/αL2)2. It is very likely that there are
many other different ways to define Pc for different physical sys-
tems. To our end of demonstrating intermittent criticality in the
sandpile model, we have found that the exact choice of formula-
tion for Pc is not crucial.

We have calculated the spatially averaged amount of grains re-
tained within the grid at each time step, i.e., 〈Z〉(t), to indicate
the temporal evolution of the dynamical behavior of the system.
Shown in Fig. 1 is an example of simulating result for the LRCS
model with variable Pc (green line), 2000 computer generations
extracted from a series of experiments each with 105 throws of
single grain on a square 50×50 grid. In each experiment, Pc starts
with 0 and then changes with an evolutional rule as described
above. For comparison, also shown in Fig. 1 are two cases with
constant Pc = 0 (blue solid line) and Pc = 1 (blue dotted line), re-
spectively. The beginning, transient thousands of iterations, where
〈Z〉(t) increases linearly, have been ignored. For the original near-
est neighbor sandpile model, i.e., the case of Pc = 0, 〈Z〉(t) fluc-
tuates about an average value of about 2.1, whereas a notable
decrease of the average of 〈Z〉(t), which is about 1.8, could be
found for the LRCS model with constant Pc = 1. Such statistically
stationary value of 〈Z〉(t) is recognized as a manifestation of the
self-organized critical state [8]. The power-law frequency-size dis-
tribution (Fig. 2) is, on the other hand, another expression of the
self-organized critical state [7,19,20].

Unlike the pattern for a fixed implementation of Pc (blue lines
in Fig. 1), the dynamic variable of 〈Z〉(t) in the LRCS model with
self-evolved Pc is often punctuated towards a smaller value by a
large event while its baseline approximately corresponds to the
average of 〈Z〉(t) in the case of constant zero Pc . For the LRCS
model with self-evolved Pc (green line in Fig. 1), large fluctuation
in 〈Z〉(t) is an important and interesting feature mimicking the
state of intermittent criticality. It is noted that, in a long run, the
power-law frequency-size distribution of avalanches in our LRCS
model with variable Pc (Fig. 2) is not disrupted. In other words,
it seems not possible through the aggregately long-term frequency-
size distribution of events to distinguish the intermittent critical
state in our LRCS model from the self-organized criticality in the
original Bak–Tang–Wiesenfeld-type sandpile model [7]. According
to such observation, we thus raise the important and fundamen-
tal question about whether it is possible to invent relevant mea-
sure [15,16] to detect precursors of great events in the intermittent
criticality system of our LRCS model if regional seismicity can be
verified to behave as so. One of the widely reported precursors
is the decline in the slope of the Gutenberg–Richter power law
for frequency-magnitude distribution of earthquakes [17]. Since the
scaling exponent in the power-law frequency-size distribution of
avalanches mimics the slope of the Gutenberg–Richter power law
of earthquakes, we have calculated the exponents of the frequency-
size distributions with many short-term samples consisting of 500
avalanches. We have found that the fluctuation in those short-term
exponents of the frequency-size distributions for our LRCS model
with variable Pc is the double to triple of the exponent fluctua-
tion for the BTW sandpile model. Moreover, in the adaptable LRCS
model, we have also found that the power-law slopes frequently
decrease before large events. We will postpone to future work
the detailed analysis of the precursory phenomenon in our LRCS
model.

3. Discussion

Thriving models based on cellular automata have been re-
cently employed for understanding the earthquake physics [8,11,
13,21–23]. One type of simple cellular automata models is mainly
the Bak–Tang–Wiesenfeld-type sandpile model [7]. In the BTW
sandpile model, the self-organized criticality, characterized by the
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Fig. 1. Temporal evolution of the spatially averaged amount of grains on board 〈Z〉(t) for three long-range connective sandpile models with Pc = 0 (blue solid line), Pc = 1
(blue dotted line) and variable Pc (green line). Also shown in the plot are the occurrence of avalanches with size > 1000 (downward red bars) and Pc larger than 0.1
(upward black bars) in the corresponding sandpile model with variable Pc . (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this Letter.)

Fig. 2. Power-law frequency-size distributions of avalanches for the original Bak–Tang–Wiesenfeld-type sandpile (red circles) and the modified long-range connective sandpile
(blue crosses) models. The power-law distribution with a slope of 1 (diagonal line) can fairly well fit the data from both the original sandpile model and the modified
long-range connective sandpile model with variable Pc . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
Letter.)
frequency-size power-law distribution, is established solely be-
cause of the dynamical interactions among individual elements of
the system. Lomnitz-Adler [21] examined 40 variants of cellular
automata focusing on their capability to reproduce a frequency-
size power-law distribution.
Debating the question of continuous vs. discontinuous criti-
cality for the earthquake fault system, the work of Sammis and
Smith [11] is representative of a new class of models which display
intermittent criticality. They built cellular automata with discrete
fractal hierarchies and studied the effect of a loss factor, the q
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value in their paper, on the behavior of the system. Such struc-
turally heterogeneous and lossy (q < 1) automata produce large
stress perturbations that move the system out of the critical state.
In those models, a large event is followed by a shadow period
of quiescence and then a new approach back toward the critical
state. In another work, with regard to the effects of initial grid
configuration, loading function, local dissipation and local redistri-
bution, Castellaro and Mulargia [13] analyzed six different cellular
automata. By means of involving a larger number of neighbors
than four nearest neighbors, they found that the number of large
events increases as approaching the main event. They thus claimed
their finding supports that the Earth’s crust approaches and re-
treats from an apparently critical state. Also, Ben-Zion et al. [16]
constructed a discrete model of a 2-D heterogeneous fault with re-
alistic dynamic weakening embedded in a 3-D elastic half-space.
They concluded, due to the appearance of the cyclical structures
in their analyzed dynamical variables for the system, the evolu-
tion in their model F may be characterized overall as intermittent
criticality.

Note that, for demonstrating the scenario of intermittent crit-
icality, all of those above-mentioned models invoked some pre-
scribed parameters to tune the sandpile/automaton system (e.g.,
the rescale factor of the discrete hierarchical fractal automaton, the
percentage of the local energy dissipation, or the dynamic weak-
ening coefficient). Since we have found that the probability of the
long-range connections is a key parameter to affect the slope of
power-law distribution [17], we here further construct an evolution
rule for the long-range connection probability Pc . In the present
LRCS model the Pc itself evolves as an explicit function of the
size of the latest event. Consequently, as Pc changes, our model
can display a similar character of intermittent criticality in the
above-mentioned models [11,13,16]. As shown in Fig. 1, the energy
decreases as a large event occurs. The system accordingly moves
out of the critical state and then gets back toward the critical state
waiting for next large event. To our knowledge, our LRCS mode
thus represents a family of models with self-evolved intermittent
criticality for simulating seismicity.

4. Conclusion

In this Letter we have proposed an alternative variant of sand-
pile models being able to demonstrate the intermittent criticality
through adaptable long-range connections. The energy develop-
ment, i.e., 〈Z〉(t), in our LRCS model with variable Pc mimics very
much the evolution in the strain energy in the real earthquake
fault system [24–27]. Since many researches [3,12,14,28] have sug-
gested that the earthquake fault system is not a system with the
self-organized criticality but one with the intermittent criticality
instead, the LRCS model with adaptable Pc represents a type of
simple and realistic sandpile model for simulating seismicity. It
seems to us that the concept of long-range connection should
be integrated into the numerical simulation process of seismic-
ity. Moreover, many variables for detecting precursory phenomena
of a forthcoming great event have been used in the literature
[14–16,28]. It will be highly interesting to perform those measures
for a synthetic catalogue generated by our LRCS model. Such a task
will be very fundamental to the issue of earthquake prediction, and
will be in detail presented elsewhere in the near future.
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