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of the sandpile model, the long-range connective sandpile model, by means of
introducing randomly internal connections between two separated distant cells. The long-range connective
sandpile model demonstrates various self-organized critical states with different scaling exponents in the
power-law frequency-size distributions. We found that a sandpile with higher degree of randomly internal
long-range connections is characterized by a higher value of the scaling exponent for the distribution,
whereas the nearest neighbor sandpile is possessed of a lower scaling exponent. Our numerical experiments
on the long-range connective sandpile models imply that higher degree of random long-range connections
makes the earthquake fault system more relaxant that releases accumulated energy more easily and
produces fewer catastrophic events, whereas lower degree of long-range connections possibly caused by
fracture healing very likely motivates accelerating seismicity of moderate events.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Many geophysical phenomena are scale invariant and exhibit the
power-law distribution (Turcotte, 1997; Dodds and Rothman, 2000),
which is the only statistical distribution not including a characteristic
scale. A striking example is the Gutenberg–Richter relation for the
frequency–magnitude statistics of earthquakes. The scaling exponent
and its associated variation is then a matter of fundamental
importance in such power-law distribution. Specifically, in the study
of seismicity evolution, the scaling exponent in the Gutenberg–Richter
relation, which is well known as the b-value, has been very often
discussed in the literature and considered as a monitoring index
related to the forthcoming large earthquakes (Smith, 1986; Urbancic
et al., 1992; Wiemer and Wyss, 1994; Henderson et al., 1994; Guo and
Ogata, 1995; Legrand et al., 1996; Wyss, 1997; Lapenna et al., 1998;
Henderson et al., 1999; Barton et al., 1999; Oncel and Wilson, 2004;
Wyss et al., 2004; Mandal et al., 2005; Wu and Chiao, 2006). The
reductions in the b-value before a large earthquake have been
reported in many researches. The reduced b-value is probably caused
by the quiescence of smaller earthquakes and/or the activation of
moderate earthquakes (e.g. Chen, 2003; Chen et al., 2005; Wu and
Chiao, 2006). For example, observed before the 1999 Mw 7.6 Chi-Chi,
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Taiwan earthquake were the quiescence of earthquakes with
magnitudes smaller than 4 (Fig. 4 in Wu and Chiao, 2006) and
activation of events with magnitudes larger than 5 (Fig. 3 in Chen,
2003).

Numerical experiments in tending to comprehend seismicity had
mainly been based on simple conceptual models such as the spring–
slider model of Burridge and Knopoff (1967), the sandpile model of
Bak et al. (1987), the block structure model of Gabrielov et al. (1990),
and the lattice-solid model of Mora and Place (1994). Among them
two types of simple cellular automata models are the spring–slider
model (Burridge and Knopoff, 1967) and the sandpilemodel (Bak et al.,
1987). In the sandpile model a hallmarked state, which is very well
known as the self-organized criticality (SOC) state and characterized
by the frequency-size power-law distribution, is established solely
because of the dynamical interactions among individual elements of
the system. Since the concept of self-organized criticality was
introduced in Bak et al. (1987), earthquakes have been identified as
an example of this phenomenon in nature (Bak and Tang, 1989;
Sornette and Sornette, 1989; Ito and Matsuzaki, 1990) and the
observation of the Gutenberg–Richter law has been suggested to be
the manifestation of the self-organized critical state of the dynamics
of the earthquake faults.

For earthquake studies, the sandpilemodel sheds new insights into
the earthquake physics in addition to those derived from earlier, much
complicated spring–slider models (Burridge and Knopoff, 1967;
Rundle and Jackson, 1977; Carlson et al., 1994). Here we propose to
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Fig. 1. Power-law frequency-size distributions for two simulations of the long-range
connective sandpile models with Pc=0 and Pc=1, respectively. Also shown are two
regression lines, with slopes of 1.06 and 1.32, best fitting the power-law distributions
from the weighted least-square method. Note that the long-range connective sandpile
with Pc=0 is identical to the original nearest neighbor sandpile by Bak et al. (1987).
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invoke an alternative variant of the sandpile model to demonstrate
variations in the scaling exponent of the power-law distribution by
means of introducing randomly internal connections between
separated distant cells. Note that the internal networks of either the
conventional spring–slider or sandpile models are essentially the
nearest neighboring networks.We examine the systematic impacts on
the scaling exponents of these randomly distant connections in our
modified sandpile model. The implications on the earthquake fault
systems are then discussed in the end of this paper.

2. Long-range connective sandpile models and its frequency-size
distributions

We build our sandpile model by a very simple set of rules that is
very similar to the original one (Bak et al., 1987). For a square grid of L
by L cells, we randomly throw sands, one at a time, onto the grid. In
the original sandpile model, once the total amount of the accumulated
sands within a single cell reaches the threshold amount of 4, they will
be redistributed to the four adjacent cells (the nearest neighbors) or
lost off the edge of the grid. All the cells receiving grains from their
neighbors will be checked, and the redistributionwould be continued
further away if any one of them reaches consequently over the
threshold too. For each throw of new grains, the redistribution
proceeds until none of the meshes receiving new grains exceeds the
threshold. The total amount of cells involved in the redistribution
process initiated by a single throw is defined to be the size of the
event. Note that the total amount of grains retained within the grid
increases linearly in the beginning transient thousands of iterations
and then stays at a quasi-static value with small fluctuations.

Our modified rule of randomly internal connections is very similar
to the implementation ofWatts and Strogatz (1998). For any particular
cell, when the accumulated grains exceed the threshold and
redistribution occurs, one of the original nearest neighbor connections
confronts a chance with prescribed connective probability Pc, 0bPcb1,
of redirecting to a randomly chosen, distant cell and so the original
connection is replaced by a randomly chosen mesh that might be
faraway from the toppling cell. We may call such version of sandpile
model the long-range connective sandpile (LRCS) model. Apparently,
when Pc=0, the LRCS model reduced to the original nearest neighbor
sandpile model.

We perform a series of simulations each with 106 throws of single
grain on a square grid with 50×50 meshes, starting with the original
nearest neighbor sandpile (Pc=0) and then gradually increasing the
connective probability Pc. For each Pc, the frequency-size power law
and the manifested SOC state always emerge robustly. The power-law
frequency-size distributions demonstrating the scale invariance on
the log–log plot for two experiments with Pc=0 and Pc=1 are very
distinct (Fig. 1). The breakdown of the power law at the extreme of
great events is obviously due to the limited size of the experimental
grid, the so-called finite-size effect.

The frequency-size power law is not a linear-normal relation.
Hence, all the data points for the distribution need not to have the
same weight as supposed when a linear relation is regressed with a
standard least-squaremethod. For example, if the distribution has two
large events instead of one, it will change very much the result from
using a least-square method. To address the issue of different
weighting in a power-law distribution, we adopt a weighted least-
square method to assign different fitting weights for different data
points of the distribution (Shi and Bolt, 1982). The results lead to a
scaling exponent of 1.06 characterizing the frequency-size statistics
for the original nearest neighbor sandpile model (Bak et al., 1987),
whereas a higher scaling exponent of 1.32 for the LRCS model with
Pc=1 (Fig. 1).

As gradually increasing the connective probability Pc from 0 to 1,
we have found that there is a systematic steady increase of the scaling
exponent along with a notable decrease of the amount of total grains
staying on the grid (Fig. 2). The comparison suggests that, with higher
degree of random long-range connections that is obtained by invoking
higher connective probability Pc, the critical state is characterized by a
sandpile with more small avalanches involving only a few cells and,
consequently, the higher value of the scaling exponent for the
frequency-size distribution. In other words, higher degree of random
long-range connections actually makes the systemmore relaxant that
releases the potential of building up catastrophic avalanches more
easily and produces fewer catastrophic avalanches.

3. Conclusion and discussion

There have been reported that an observed feature associated with
the earthquake statistics is a significant increase of moderate earth-
quakes and a noticeable reduction of the b-value of the Gutenberg–
Richter relationship prior to great earthquakes (e.g. Sykes and Jaume,
1990; Henderson et al., 1994; Bowman et al., 1998; Jaume and Sykes,
1999; Chen, 2003; Wu and Chiao, 2006). An immediate implication of
our experiments to the temporal evolution of the seismicity is that, as
the tectonic loading is slowly driving the earthquake fault system
through the cycle of earthquakes leading to the catastrophic event,
there might be different phases all bearing characteristics of SOC. The
initial phase is characterized by a small but notable random long-
range connection with 1NPc≫0. It then evolves gradually towards
more and more regular nearest neighbor connection with Pc~0 such
that themanifestation is the noted accelerating seismicity of moderate
size and a reduction of the b-value (Fig. 2). After the occurrence of
some great earthquakes, possibly due to the activity of faults, the
change of pore water pressure or the dynamical triggering of seismic
waves, the earthquake fault system is very likely to bear with a
significant degree of long-range connections with higher Pc. Bursting
aftershock activity might well be the manifestation of a raised long-
range connection. Then, the system heals gradually along with the
tectonic loading and gets back to the initial phase preparing for the
next cycle of extreme events.

The mechanism depicted above is utterly different from the
temporal growth of long-range correlation length on the system in
the critical point theory of earthquakes (Bowman et al., 1998; Jaume
and Sykes,1999; Rundle et al., 1999; Rundle et al., 2000). To the critical
point theory of earthquakes, the correlation length of the regional
stress field grows prior to the catastrophic event. The origin of
accelerating seismicity of moderate events lies in the growing



Fig. 2. Scaling exponents (crosses) of the long-range connective sandpile models with
various connective probabilities Pc gradually increasing from 0 to 1. All the scaling
exponents are normalized to the value of scaling exponent, i.e. 1.06, of the nearest
neighbor sandpile with Pc=0. Also shown in the plot is the average number of total
grains staying on the grid (circles) for each Pc. Again, the total grain number is
normalized to the number for the case of Pc=0, which is averagely 5244.
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correlation lengthwhich sets a limit on the largest possiblemagnitude
of the forthcoming catastrophic event. In other words, the occurrence
of catastrophic event strongly relies on the power-law growth of the
correlation length (Rundle et al., 1999) and the power-law increase in
the cumulative Benioff strains (Bowman et al., 1998). In the LRCS
model high degree of long-range connections/interactions does not
necessarily encourage catastrophic earthquakes and, perhaps even
more interestingly, it is lower degree of long-range connections/
interactions that motivates accelerating seismicity of moderate
events. It is the case without any long-range connections (Pc=0)
such that the interactions are limited within the nearest neighbors
that yields the lowest scaling exponent and the most enriched events
above moderate sizes. It is probably that the long-range correlation
and the long-range connection are two different concepts regarding
the spatial scale. In other words, reducing global long-range connec-
tion actually helps to build regional long-range correlation of stress
field.

It is also interesting to compare the results from the LRCS models
with the spring–slider models (e.g. Shaw et al., 1992; Wang et al.,
1995; Wang, 1997). Many researchers have tried to investigate the
seismic activation preceding a large earthquakewith the spring–slider
model. Shaw et al. (1992), for example, found that the seismic activity
accelerates dramatically prior to a large event in their spring–slider
model and is usually a maximum in the neighborhood of the future
epicenter. Numerical simulations in Wang et al. (1995) and Wang
(1997) clearly demonstrated the distributions with different scaling
exponents in the frequency versus rupture length or magnitude of
earthquakes for various stiffness ratios in the spring–slider models.
The stiffness ratio indicates the degree of the joint effect of the coil
springs Kc betweenmass elements and the leaf springs Kl between the
moving plate and the mass elements, and is defined as Kc/Kl. In the
case of smaller stiffness ratio the frequency–magnitude distribution of
earthquakes possesses a higher and steep slope in the log–log plot
while larger stiffness ratio a lower and gentle slope for the
distribution. Note that, when Kl is much smaller than Kc or approaches
to zero, the coupling effect due to the leaf spring disappears and the
behavior of the system is dominated by the nearest neighbor coupling
between two mass elements. For the case not including the frictional
action, the spring–slider system with an infinite stiffness ratio is
exactly reduced to a conservatively nearest neighbor sandpile model
without long-range connections. As Kl increases and the stiffness ratio
decreases the coupling of the leaf springs takes away the accumulated
energy of the system of mass elements and the energy redistribution
process is no more localized to neighboring mass elements. We thus
speculate that the effect of introducing a large Kl is equivalent to that
introducing a certain degree of long-range connections of distantmass
elements. Our speculation is supported by the frequency–magnitude
distributions with larger scaling exponents of synthetic seismicity for
smaller stiffness ratios in the studies of Wang et al. (1995) and Wang
(1997).

Very recently, there are someresearches (e.g.Weatherleyet al., 2002;
Xia et al., 2005) demonstrating another type of the so-called long-range
effect in the automaton or spring–slider models. Weatherley et al.
(2002) used a long-range strain redistribution rule in their automaton
model to approximate the elastodynamic stress Green's function of the
crust. Similarly, Xia et al. (2005) presented the simulation of the spring–
slider model with the long-range stress transfer. Note that, precisely
speaking, those models actually employed a larger number of
neighboring cells surrounding the failed cell for the longer-range transfer
of stress/strain, which is essentially different from the redirection to a
randomly chosen, distant cell in our LRCS models.
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