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SUMMARY

Natural seismicity is correlated across multiple spatial and temporal scales, but correlations in seismicity
prior to a large earthquake are locally subtle (e.g. seismic quiescence) and often prominent in broad scale
(e.g. seismic activation), resulting in local and regional seismicity patterns, e.g. a Mogi’s donut. Recognizing
that patterns in seismicity rate are reflecting the regional dynamics of the directly unobservable crustal
stresses, the Pattern Informatics (PI) approach was introduced by Tiampo et al. and Rundle et al. in
2002. In this study, we expand the PI approach to forecasting earthquakes into the third or vertical
dimension, and illustrate its further improvement in the forecasting performance through case studies of
both natural and synthetic data. The PI characterizes rapidly evolving spatio-temporal seismicity patterns
as angular drifts of a unit state vector in a high-dimensional correlation space, and systematically identifies
anomalous shifts in seismic activity with respect to the regional background. 3D PI analysis is particularly
advantageous over 2D analysis in resolving vertically overlapped seismicity anomalies in a highly complex
tectonic environment. Case studies will help to illustrate some important properties of the PI forecasting
tool. Copyright © 2009 John Wiley & Sons, Ltd.

Received 31 October 2008; Accepted 24 July 2009

KEY WORDS: pattern informatics; effective ergodicity; earthquake forecasting; seismicity rate

∗Correspondence to: Y. Toya, Department of Earth Sciences, University of Western Ontario, London, ON, Canada.
†E-mail: ytoya@uwo.ca; yuzo.toya@gmail.com

Contract/grant sponsor: NSERC
Contract/grant sponsor: Aon Benfield/ICLR IRC
Contract/grant sponsor: SCEC; contract/grant number: 1243
Contract/grant sponsor: NSF Cooperative Agreement; contract/grant number: EAR-0529922
Contract/grant sponsor: USGS Cooperative Agreement; contract/grant number: 07HQAG0008

Copyright q 2009 John Wiley & Sons, Ltd.



1570 Y. TOYA ET AL.

1. INTRODUCTION

Earthquake forecasting and fault zone characterization for earthquake hazard analysis are some of
the important goals of earthquake studies. Acquisition of quality earthquake data and refinement of
analysis techniques make these aims increasingly feasible. A promising intermediate-term earth-
quake forecasting PI method [1–4] is based on phase dynamics concept from statistical mechanics,
which provides a macroscopic portrait of complex microscale physical processes [5] in terms of
both threshold dynamics and long-range interactions of these microscale faults [1–4, 6–8]. In this
view, the highly correlated space–time dynamics of small to moderate magnitude seismicity, driven
by a steady loading of the regional stress, can be characterized by the rotations of a time-dependent
unit state vector in a real-valued Hilbert space about the origin. Our interest lies solely in the
space–time fluctuations or rotations of this phase angle, i.e. the phase dynamics concept [9]. Non-
random and persistent rotation of this phase angle provides information on the trend of correlated
seismicity anomalies in the system under investigation, measured with respect to the nearly sta-
tionary background [1–4]. A 2D version of this method has been shown to work effectively in
forecasting moderate to large natural earthquakes in various parts of the world including California,
Japan, Taiwan, and Canada [10–16]. Here, the method is being developed for 3D applications in a
variety of tectonic environments, including the subduction zone setting, and the properties of the
PI approach will be illustrated through case studies of both synthetic and natural seismicity data.

2. METHOD

2.1. Data quality

Event location accuracy, earthquake catalog homogeneity, and magnitude of completeness are im-
portant aspects of seismicity rate studies, in order to detect the real or natural changes in the
seismicity rate. Catalog homogeneity and completeness can, for instance, be disrupted by some
artificial changes in observational station coverage [17–19], large earthquake occurrences, where
catalog incompleteness can result directly from the masking effect on small events from relatively
large sequences of aftershocks near the main events, in addition to the incomplete collection of
small events in some regions [20]. In order to resolve these issues we take the following mea-
sures: (i) Select the quality catalogs and include multiple catalogs in the analysis, where such data
are available, in order to evaluate the consistency of analysis results (e.g. [21]); (ii) Perform in-
dependent evaluations of the catalog homogeneity (e.g. [17–19]), the magnitude of completeness
(e.g. [22–24]), and the validity of the assumption of effective ergodicity on each fault system un-
der investigation (e.g. [25,26]); and (iii) Perform a comparison of the PI analysis results and one
formulation of the optimal forecasting approach (cf. [12], [27–31]).
In order to perform (i), above, we choose for the analysis instrumentally recorded earthquake

data: from the Centennial Earthquake Catalog (Centennial) [32,33] and the Advanced National
Seismic System (ANSS) catalog [34] for the retrospective analysis of seismicity in Sumatra region;
the Central Weather Bureau Seismic Network (CWB) catalog for a study in Taiwan region; and
the National Earthquake Database of Canada (NRC) [35] for a study in western Canada. The
Centennial composite catalog, prepared by Engdahl and Villaseñor [32] with the aim to compile
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a homogeneous catalog of global seismicity in the 20th century, contains relocated hypocenter
data [33] and a complete listing of events with M ≥ 5.5 since 1964 in their preferred or adjusted
magnitude scale [32]. The ANSS composite catalog and the other catalogs used in the analysis, on
the other hand, are carefully evaluated for catalog homogeneity in our specific study areas.
Each earthquake catalog is examined with special attention given to catalog homogeneity and

completeness, the presence/non-presence of large event sequences with numerous dependent after-
shocks, and the reported seismicity depths. We do not apply any artificial declustering with arbitrary
windowing algorithms on the data prior to a PI analysis, as the nature of clustering or anti-clustering
phenomena present in the data is a part of what we seek to study in the analysis. Effects of artificial
declustering on PI analysis performance will be discussed elsewhere.
Earthquake catalog often contains default depth information that is routinely assigned by seismic

networks for those inadequately located events. This requires the use of some precautions as it
relates to the definition of observational parameters and the interpretation of analysis results in 3D.
Nonetheless, the PI index is robust and largely insensitive to the incompleteness of event records
so long as the cataloging is performed consistently or homogeneously.
PI analysis assumes that the regional background seismicity rate of a given fault system under

investigation is stationary. This is a necessary condition for the best performance of the PI, which
utilizes a linear operator in its calculation [1–4,7]. In addition, stationarity is necessary, although not
sufficient, condition, for physical processes to be ergodic (e.g. [25,26]). When statistically ergodic
periods and parameter ranges are selected for a particular PI analysis, its forecasting power should
improve [15]. Accordingly, we make an effort to validate this assumption by analyzing the effective
ergodicity of the fault system under investigation using the well-known Thirumalai and Mountain
(TM) metric (e.g. [36]).
TM metric �e(t) is defined as:

�e(t) = 1

N

N∑
i=1

[�i (t) − �̄(t)]2 (1)

�̄(t) = 1

N

N∑
i=1

�i (t) (2)

�i (t) = 1

t

∫ t

0
Ei (t

′) dt ′ (3)

where Ei (t ′) is the value of the energy in i th cell at time t ′, which is assumed to be equal to the
number of earthquakes of a given minimum magnitude or larger in a catalog at time t ′ [26]; �i (t)
is the time-averaged rate of seismicity in i th cell or element of N discretized cells in a system;
�̄(t) is the ensemble average of N temporal averages in the system; and �e(t) is the TM metric or
fluctuation metric, which is essentially the spatial variance of N temporal averages over the study
area for a given time-interval t . This metric is calculated at every successive time step, and is used
to evaluate whether the phase space is explored equally with time [26]. In an effectively ergodic
system, temporal and spatial activities of individual elements in the system would be practically
indistinguishable in terms of its averaged properties [36]. Such a state is said to be in statistical
equilibrium [26] and the inverse of the metric has a linear relationship with increasing time-interval t
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[8,25,26,36,37]. A detailed discussion on the application of TMmetric to seismicity studies is found
in Tiampo et al. [26]. Plots of the inverse TM metric versus time show linearly increasing values
of the inverse metric for those time periods where the system is effectively ergodic, or the spatial
and temporal averages approach the same constant values.
TM metric is very sensitive to changes in seismicity rate, and the linearity of inverse TM curves

will break in response to various types of rate changes in the system. These include gradual detection
level increases in a seismic network or a sequence of large earthquakes with numerous aftershocks,
etc. [26]. The TMmetric is more sensitive than the algorithm developed by Habermann [17], used to
detect systematic rate changes or breaks in the temporal stationarity of seismic activity apparent in a
catalog. In addition, the TM metric can detect obscure (spatio-temporal) rate changes in seemingly
stationarity processes.

2.2. Pattern Informatics (PI) index

The PI method applied here in 3D is, in essence, identical to the original method [1,2,10,11,15,16].
The linear decomposition of synthetic seismicity from a numerical fault model of California and
its reconstruction were originally introduced by Rundle et al. [3], and expanded for the inves-
tigations of natural seismicity in [1,2,4,7]. It is based on the idea that both fault movements
and seismicity are good proxies for directly unobservable stress fluctuations (e.g. [38,39]). The
PI method quantifies local and regional stress interactions in a fault system through the objec-
tive characterization of seismicity rate changes. Further details can be found in Tiampo et al.
[1,2,10,11,16].
The calculation of the PI index takes six basic steps as described in Table I. The details of

further modified versions of the original method [1,2,10,11,16] are found in Holliday and coworkers
[12–14,16,28–31].
First, a study area is discretized into N cells of dimensions: ‘dX ’ in longitude by ‘dX ’ in latitude

by ‘dZ ’ in depth {Step 1}. Next, the time-average rate of earthquakes (M ≥ Mmin),�obs(xi , t), is
individually calculated in each cell ‘i’ for time periods: [t0, t1) and [t0, t2), to construct seismicity
rate functions:

S(xi , t0, t) = 1

(t − t0)

∫ t

t0
�obs(xi , t) dt (4)

Table I. The PI method (Flow chart).

Step 1: Discretization of a study area into N cells (Each cell is dX by dX by dZ in size.)
Step 2: Calculate activity rate �obs(xi , t) and construct seismicity function S(xi , t0, t) for

each cell (xi )
Step 3: Construct the phase function S′(xi , t0, t) (See text.)
Step 4: Calculate the important changes in seismicity or the rotation of the N -dimensional

unit vector: �S′(xi , t1, t2) = S′(xi , t0, t2) − S′(xi , t0, t1)
Step 5: De-noising and removal of the free parameter, the choice of base year
Step 6: Relate probabilities to the square of the associated vector phase function
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where t = t1 or t2 {Step 2}. Then, the mean-zero unit-norm phase function S′(xi , t0, t) for t = t1
or t2 is calculated as

S′(xi , t0, t) = S(xi , t0, t) − 〈S(xi , t0, t)〉
‖S(xi , t0, t)‖ (5)

where 〈S(xi , t0, t)〉 is the spatial mean and ‖S(xi , t0, t)‖ is the standard error of N spatially dis-
tributed S functions in the study area {Step 3}.
The important rotation of the N -dimensional unit state vector is, then, calculated in {Step 4}:

�S′ = S′(xi , tb, t2) − S′(xi , tb, t1) (6)

To identify the coherent trends in �S′ and to practically remove the choice of a free parameter,
base year (tb) is varied along the time-axis for all possible values in the range of [t0, t2) and the
representative values of �S′ are obtained by averaging them in time {Step 5}.
The idea here is that the shift in the earthquake activity rate from one state t1 to another t2 can

be characterized by this rotation �S′(xi , t1, t2) of the state vector S′
i [1,2]. We are solely interested

in this angular drift �S′, and the L2-norm of the state vector is assumed to be constant. Again,
delineation of the effectively ergodic regions of the associated parameter space helps to ensure that
this is true for the period of time under evaluation. As we look for the probability increase beyond
the background mean amplitude, we compute �P(xi , t1, t2) or the anomalous change in probability
of an event, the PI index, as follows:

�P(xi , t1, t2) = {�S′(xi , t1, t2)}2 − � (7)

where � is the spatial mean of {�S′(xi , t1, t2)}2.
The PI method has been applied to various seismically active regions of the world, e.g. California,

Taiwan, Japan, and others (e.g. [1,2,10–16,28–31,40]), and shown to successfully forecast moderate
magnitude earthquakes, given a good quality earthquake catalog of small magnitude events. The
technique is also capable of identifying both activation and quiescence anomalies in seismicity
patterns [1,2] (Table II; Figures 1–4).

2.3. Mapping parameters

The horizontal dimension of a discretization cell (dX) and the vertical cell size (dZ) for a 3D
analysis are typically selected to match the linear dimension of a target event to be forecast. These
values can be set based upon the estimates of typical surface rupture length and width dimensions
[1,2] or by following an empirical relation such as that of Wells and Coppersmith [12,41]. Ideally,
however, the optimal discretization cell dimension should be defined so as to maximize the fore-
casting performance even with the presence of significant spatial clustering in data (aftershocks
of large earthquakes), which may not be representative of a statistically independent sample in
the point process of interest. A grid search would systematically help us to select the appropriate
discretization dimension so as to minimize the potential effects from ergodicity breaking clustering
in data, given a set of map boundary or ensemble size [cf. 15,16,31,42]. Furthermore, automatic
grid search would be a practical approach, when we have not yet accumulated the empirical in-
formation regarding the relationship between the linear dimensions of target events and PI index
anomalies.
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Activation (A)

Quiescence (Q)

Background

(a)

(b)

Figure 1. Synthetic uniform random event catalog with rate changes given at known instances: (a) in time and
(b) in space. (Also, (b) illustrates the expected or ideal distribution of �S′ anomalies in 3D PI analysis.)

*  No anomalies will be 
visible in 2D due to the 
cancellation of vertically 
stacked signals.

Longitude

Latitude

(a)

(b)

(c)

Figure 2. Anomalies to be recovered in a synthetic test model (Figure 1) by 3D or 2D analysis:
(a) expected PI anomalies in 3D analysis; (b) expected RI anomalies in 3D analysis; and (c) expected

PI and RI anomalies in 2D analysis.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:1569–1592
DOI: 10.1002/cpe



PI APPROACH TO EARTHQUAKE FORECASTING IN 3D 1575

Figure 3. Signal recovery test results on a synthetic model (cf. Figures 1 and 2).

The magnitude of target event to be forecast is often selected to equal: M ≥ Mmin+2, where Mmin
is the minimum magnitude of events available in a data set. The magnitude difference value ‘+2’ is
based on empirical studies of data quality and availability in an area such as California, but also may
be related to the regional earthquake production rate. It is possible to select different values across a
range of magnitude units to calibrate the tool for a particular study area or data set. In addition, this
may be related to the differences between activation and quiescence behavior, which can be detected
with this analysis. For example, one might select for the magnitude difference to be between +1.5
and +3 units (e.g. [30,43–45]) to test a null hypothesis that precursory activation signals related to
the long-range power-law-type acceleration do not exist (although the size of acceleration volumes
would be far larger than the discretization unit-length applied in this analysis). As for precursory
quiescence (e.g. [46]), we would still need to accumulate the appropriate region-specific statistics
for future PI analyses. One potential method for determining the optimal set of parameter values
for a given study area, again, is to vary the parameters across a range of possible sets of values by
means of the grid search technique [cf. 15,16,31,42] with the help of a forecast verification tool
(discussed in Section 2.5).
The temporal binning size ‘dT ’ is selected as one day in our case analyses below, however,

the optimal parameter value should be sought, which would be specific to the nature of physical
system being investigated. This parameter is important, particularly for the Alternative PI Method
(discussed next), in that it is related to the sensitivity of PI forecasting given the presence of
significant temporal clustering in data (cf. Sections 3 and 4), and is also related to the overall
adherence to the statistical independence assumption of the point process in a study.
The ‘Alternative PI Method,’ as it appears in our case study, employs ‘the counts of days

with at least one event’ instead of ‘daily counts of events’ in the representation of activity rate
�obs(xi t) (Step 2, Section 2.2). It is essentially a binary measure of seismicity rate. This sim-
ple procedure eliminates the potential effects of temporal clustering in shorter than 1 day with-
out perturbing the signals that we seek in the analysis. The difference between the original and
this alternative method provides practical information as to the nature of temporal clustering in
the data (cf. Section 4). Such information would be very valuable for the future development of
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(a)   3D PI    3D RI           ROC (3D PI vs. 3D RI)

* In (a), the results illustrate the idea that PI detects both activation and quiescence volumes, whereas RI detects 
only activation volumes. Dots are the target events to be forecast. (Cf. Figure 3 for model dimensions.)

(b)   3D PI    3D RI           ROC (3D PI vs. 3D RI)

* In (b), the ROC curves would plot around the diagonal or H=F line, examples of random guessing, regardless 
of the use of a Moore’s neighborhood option. (Cf. Figure 3 for model dimensions.)

(c).   3D PI (Collapsed to 2D)        2D PI ROC (3D PI vs. 2D PI)

* In (c), the forecasting performances of 3D and 2D PI analyses are evaluated on the vertically stacked A & Q 
anomaly model (Figure 1-3). For the purpose of performance comparison, the 3D PI analysis result is collapsed 
onto a map area equivalent to that of the 2D analysis result. The cells with circle symbols are to be forecast as 
alarm boxes in these experiments (Cf. Figure 3 for model dimensions.)
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Figure 4. Test comparisons of forecasting performance by various methods: PI or RI; 3D or 2D.

declustering algorithm specific to the PI approach, without the use of additional and arbitrary
windowing techniques.
The duration of the ‘change time |t2 − t1|’ is typically selected to match that of the ‘forecast-

ing period |t3 − t2|’, based on the hypothesis that the diffusion rates of pre-seismic and post-
seismic activities are approximately equal and constant (e.g. [1,2,4]). Alternatively, one might
select the time durations based on the statistics of empirical precursor time for a given target
magnitude event to be forecast (e.g. Figure 5 in Scholz [47]). At the current stage of this tool
development, however, it is more important for one to validate the effective ergodic nature of
the system being investigated before selecting the time-intervals. Tiampo et al. [16,25,26] and Li
et al. [15] demonstrated, through practical case studies of both natural and synthetic seismicity
data, the importance of effective ergodicity for the optimal performance of PI forecasting. We
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Table II. The PI terminologies.

t0: The beginning (inclusive) time of an earthquake catalog
t1: The beginning (inclusive) of the ‘change time’
t2: The end (exclusive) of the ‘change time’, or

the beginning (inclusive) of the forecasting period
t3: The end (exclusive) of the forecasting period
�S′ anomalies Anomalous +/− activity rates with respect to the regional mean rate (e.g. [10])
PI anomalies Volumes in anomalous seismic activity (both activation and quiescence)
RI anomalies Relative Intensity (RI) is defined as in article [12], and is based on

the hypothesis that precursory anomalies are associated with long-term
clustering of seismicity (time between t0 and t2)

find that many natural fault systems behave effectively ergodic but occasionally punctuated by
large earthquake occurrences, where abrupt breaks are found in the linearity of inverse TM curves,
and that PI forecasts that take this into consideration perform better than the PI forecasts that
do not.

2.4. Forecasting source dimension, geometry, and mechanism

Stress/strain accumulation occurs in all three spatial dimensions. It is essential to analyze seismic
activities in 3D, where practicable, in order to accurately assess source dimensions, geometries, and
mechanisms associated with seismogenic processes. In a situation where activation and quiescence
volumes are vertically stacked, for example, 3D analysis is a necessary option to correctly resolve
the vertical profile of such anomalies. The following experiment (Figures 1–4) demonstrates the
importance of a 3D analysis in this regard by evaluating the PI’s performance in resolving controlled
seismic activation and quiescence volumes utilizing a synthetic catalog (with perturbations added
at known instances to a uniformly randomized catalog). In addition, the inherent property of the
PI approach compared with that of a benchmark ‘Relative Intensity (RI)’ [12] alternative is also
illustrated through this experiment.
In this experiment, a synthetic catalog with white noise is perturbed systematically to give abrupt

rate changes in the mid-term (indicated as ‘t1’ in Figure 1(a)) of the data set, arranged in a particular
manner in space as shown in Figure 1(b). The study volume is essentially partitioned into two sets
of subvolumes: activation volumes (A) (in red color) and quiescence volumes (Q) (in blue color).
Only activation volumes are expected to be identified as RI anomalies, as RI is a measure of long-
term (|t2 − t0|) ‘spatial’ relative intensity of seismic activity in a study area, as defined in Holliday
et al. [12], while the PI would detect both types of anomalies: A and Q.
In a 3D analysis, both anomalous volumes stacked vertically would be recoverable, provided that

the anomalous signals are strong enough with respect to the background noise. On the contrary, the
vertically overlapped signals with the opposite sense (activation vs quiescence) would be invisible
in a 2D analysis, and only random noises would remain, Figures 1–4. In addition, as can be seen
in Figure 4(a), the PI is capable of resolving both intermediate-term activation and quiescence
anomalies, while RI responds only to long-term relative activation anomalies.
The above experiment suggests that certain selections of mapping parameters can influence the

apparent recovery rate of the modeled anomalies, provided that target anomaly sizes are known.
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However, the apparent drop in the recovery rate of expected anomalies in the above example
(Cases for dX = 0.25 and dZ = 0.25, Figure 3) is likely due to the oversampling of artifi-
cially uniform random noise in the background. The presence of signals hidden beneath such
spurious noises can be elucidated by the application of a receiver operating characteristic (ROC)
test with a Moore neighborhood option (cf. Section 2.5, below). In addition, the above experiment
illuminates the fact that the superior forecasting power of PI with respect to RI follows from the PI’s
ability to detect precursory seismic quiescence signals. RI does not detect any quiescence signals
(Figures 1–4).

2.5. Forecast verification and skill evaluation

An ROC diagram [27] is utilized to evaluate the PI’s performance in binary forecasting of moderate
magnitude events. (ROC analyses are routinely applied in weather forecasting and in medical
diagnosis, etc., and are based on the signal detection theory.) The combined use of ROC diagrams
and synthetic models such as shown earlier in Figures 1–4 also can help in the assessment of the
overall improvement of a modified PI method in forecasting skill with respect to that of the original
method (e.g. Figure 4(c)). Similar applications of ROC diagram are found in studies by Holliday
et al. [12–16,28–30], for the assessment of PI’s performance with respect to that of RI alternatives
(e.g. Figure 4(a)) or random guesses (e.g. Figure 4(b)).
The criteria employed in the ROC analyses of moderate magnitude event forecasts are as follows.

For the performance measure of forecasting target events occurred between time ‘t2’ and ‘t2 +
|t2 − t1|’, we define a = a hit, where an event occurred in a ’hotspot’ or an alarm box; b = a
false alarm, where no event occurred in a hotspot; c = a miss, where an event occurred in a white
(non-hotspot) box; d = a correct rejection, where no event occurred in a white (non-hotspot) box;
n(the total number of test cases)= a + b + c + d. In ROC analyses, H(hit rate) is defined as:
H = a/(a + c), and F(false alarm rate) is defined as: F = b/(b + d). In general, ROC curves for
more skillful forecasting would plot further away from the no-skill line (the diagonal or H = F,
the case of random guesses). Area Under the Curve (AUC) is used as a measure to describing the
relative performance of forecasts. AUC ranges from 0 to 1, where AUC of 0.5 would be equivalent
to a random guessing and AUC of 1 would mean the forecast to be perfect.
Each different earthquake catalog contains events recorded under various observational condi-

tions, e.g. different station coverages, etc. and accordingly, variations exist in precision of event
locations. In order to account for such potential location errors, we often consider events that fall
within a Moore’s neighborhood around a hotspot toward the statistics, for example [12] (cf. Case
analyses, Section 3, below). However, the Moore’s neighborhood option is not applied for these
ROC analyses on synthetic models shown in Figure 4(a) and (c).

3. CASE ANALYSES

This section provides case study results of retrospective PI analyses performed on natural earthquake
data from three seismically active regions: (a) regional view of shallow seismic activities in western
Canada fault systems including the Queen Charlotte triple junction in Section 3.1 [48], (b) Taiwan
Island, a locus of highly active and complex collisional tectonics on the western edge of the Pacific

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:1569–1592
DOI: 10.1002/cpe



PI APPROACH TO EARTHQUAKE FORECASTING IN 3D 1579
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Figure 5. Analysis results for western Canada: (a) 2D TM for M ≥ 3 seismicity; (b) 3D TM for M ≥3
seismicity; (c) time series of annual seismicity rate for M ≥3; (d) 2D PI analysis result for target
magnitude events M ≥ 5 (circles); (e) 3D PI analysis result for target magnitude events M ≥5 (circles);
and (f) ROC diagrams comparing the forecasting performances of 2D PI and 3D PI for target magnitude
events M ≥ 5. Dashed line is for the 2D PI (AUC = 0.93), and solid line is for the 3D PI (AUC = 0.96).
The 3D analysis result was collapsed into a 2D map with a map-coverage equivalent to that of the

corresponding 2D analysis result before the comparison.

Rim in Section 3.2, and (c) the Java–Sumatra region in Section 3.3, a megathrust subduction zone
that has hosted multiple large to great subduction earthquakes in the recorded history. The PI
technique’s performance in retrospective forecasting of moderate magnitude events is evaluated in
cases (3.1) and (3.2), in a similar manner as introduced in Holliday et al. (e.g. [12]). In the case
study of Section 3.3, we demonstrate one example where PI analyses detect anomalous activities
prior to great earthquakes.
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3.1. Retrospective forecasting of shallow moderate magnitude seismicity in
western Canada

This study area includes the highly seismically active Explorer microplate, about which three
plates meet: the Juan de Fuca plate subducts beneath the North American plate (the northern end
of the Cascadia subduction zone), the Queen Charlotte transform fault continues to the north, and
the Juan de Fuca Ridge meets the others offshore Vancouver Island at the Queen Charlotte triple
junction [49,50]. Along the Queen Charlotte transform fault, the largest Canadian earthquake (M8.1)
occurred in 1949 since the 1700 Cascadia earthquake (∼ M9) [50]. For this area, the NRC National
Earthquake Database [35] M ≥ 3 is used for the retrospective forecasting of shallow moderate
magnitude seismicity. The following mapping parameters are used: Target Magnitudes of M ≥ 5
for 3D analysis and M ≥ 4.5, M ≥ 5, M ≥ 5.5 for 2D analysis; dX = 0.2◦; dZ = 5 km; the change
time [t1, t2) = [1997/1/1, 2002/1/1); and the forecast time [t2, t3) = [2002/1/1, 2007/1/1).
Figure 5 shows the TM metric analysis results (Figure 5(a),(b)) and the corresponding seis-

micity time-series (Figure 5(c)). Identical mapping parameters as applied for the PI analyses
(Figure 5(d),(e)) are used in the TM metric analyses. The system under investigation is in gen-
eral effectively ergodic for most of the training time period [t0, t2), except for some disturbances
caused by moderate to large earthquake sequences in the area. These selections of the training
period and the change time [t1, t2) are based on data availability and the effective ergodicity results
for this fault system.
Figure 5(f) shows ROC curves comparing the results of the 2D and 3D PI analyses

(Figure 5(d),(e)). For the purpose of comparison, the 3D analysis result was collapsed into a 2D
map with a map-coverage equivalent to that of the corresponding 2D analysis result (as demon-
strated in Figure 4(c)). ROC curve representing the performance of the 3D forecasting plots much
further away from the no-skill line than that of the 2D analysis, demonstrating the better forecasting
performance of a 3D over a 2D approach.
The results summarized in Table III suggest that the optimal forecasting performance of 2D PI

is possible for target magnitude events M ≥ 5 in this study area. Furthermore, the ‘Alternative PI
method,’ which discounts potential effects from temporal clustering shorter than a day, appears to
work efficiently in characterizing anomalous shallow seismicity patterns in the area. Earthquake
production rates (per volume [km3], per time-interval [year]) in this study area are: 9.1e − 7 for
M≥3 and 2.8e − 8 for M ≥ 5.

Table III. Comparison of 2D PI forecasting performance (in AUC∗) for various target magnitudes
(Study area: Western Canada).

Alternative PI method Original PI method
Target
magnitude w/o Moore w/Moore w/o Moore w/Moore

M 4.5 0.83 0.93 0.8 0.9
M 5.0 0.88 0.96 0.81 0.92
M 5.5 0.72 0.93 0.67 0.88

Suggested target magnitude and the corresponding AUC values are highlighted in boldface.∗AUC = Area under the curve of ROC.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:1569–1592
DOI: 10.1002/cpe



PI APPROACH TO EARTHQUAKE FORECASTING IN 3D 1581

3.2. Retrospective forecasting of moderate magnitude earthquakes in Taiwan region

Taiwan Island is situated above a subduction-collision complex, where the Philippine Sea plate
obliquely subducts beneath the Ryukyu subduction zone due northwest (∼N50W [51]), which
collides against the island on the Euresian continent from the east [52]. Also, South China Sea
subplate (a part of Eurasian continental shelf) subducts beneath the Phillipine Sea plate eastward
in the south of the island [53]. Superposition of multiple collisional forces makes the area highly
seismically active at depth, where the shape of the deformed Ryukyu slab can be perceived in the
cloud of seismicity 100 km beneath the island [52]. The earthquake catalog of the CWB in Taiwan
is applied for this study. The geographical area covered in this study is from 119.3 to 122.8 in
longitude, 21.7 to 25.7 in latitude, with the depth range: 0–30 km (also tried 0–60, 0–100 km),
and Mmin = 3. Mapping parameters for this region are: Target Magnitude ≥ 5 (or various others
experimented; cf. Tables IV and V); dX = 0.1◦; dZ = 5 km (also tried 10 km); and the change
time [t1, t2) = 1991/1/1–1999/1/1.

Table IV. Comparison of 2D PI forecasting performance (in AUC*) for various target magnitudes (Study area:
Taiwan region). Table information corresponds to Figure 6(c) and (f).

Alternative PI method Original PI method
Target
magnitude w/o Moore w/Moore w/o Moore w/Moore

M 5.0 0.56 0.71 0.52 0.65
M 5.5 0.6 0.77 0.52 0.69
M 6.0 0.65 0.83 0.53 0.76
M 6.5 0.52 0.74 0.44 0.64

Suggested target magnitude and the corresponding AUC values are highlighted in boldface.

Table V. Comparison of 2D PI forecasting performance (in AUC∗) for various target magnitudes and depth
ranges (Study area: Taiwan region; Base-year= [t0, t1)†).
Target Alternative method Original method

Depth range (km) Magnitude w/o Moore w/Moore w/o Moore w/Moore

0–25 M 5.0 0.55 0.7 0.5 0.62
M 5.5 0.62 0.84 0.51 0.73
M 6.0 0.64 0.85 0.5 0.71
M 6.5 0.49 0.83 0.37 0.61

25–50 M 5.0 0.58 0.76 0.54 0.76
M 5.5 0.82 0.86 0.82 0.89

50–75 M 5.0 0.85 0.92 0.85 0.93
75–100 M 5.0 0.87 0.92 0.87 0.92

Suggested target magnitude for each depth range and the corresponding AUC values are highlighted in boldface.∗AUC = Area under the curve of ROC.†Changing the range of base-year shift from [t0, t2) to [t0, t1) does not affect the statistics.
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Figure 6(a) shows the results of TM metric analyses performed with the identical mapping range
and parameters as used in the PI analyses in the study area. Shown at the bottom of Figure 6(a)
is the annual rate of seismicity (Mmin ≥ 3) for the Taiwan region. Linearity on the inverse TM
metric curve for 3D analysis appears to be more pronounced than that of the 2D analysis result.
This observation is comparable with the analysis results by Li et al. [15] and Tiampo et al. [16].
Both 3D and 2D TM metric analysis results suggest that the effective ergodicity of the system is
punctuated by multiple large earthquakes, one of which occurs in 1994 [15,16], but for this case
study the record segment with this small break in effective ergodicity is intentionally kept within
the change time in order to illustrate the robustness of the PI method. Ensemble size selected here is
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Figure 6. Analysis results for Taiwan region: (a) TM curves and annual seismicity rate for M ≥ 3;
(b) 3D PI analysis result for target magnitude events M ≥ 6 (original method); (c) 2D PI analysis
result for target events M ≥ 6 (original method); (d) 2D RI analysis result for target events M ≥ 6
(original method); (e) 2D �S’ analysis result for target events M ≥ 6 (original method); and (f) 2D

PI analysis result for target events M ≥ 6 (alternative method).
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slightly smaller than that of the analysis performed by Li et al. [15] for the same objective. Annual
earthquake production rates (per volume [km3], per year) in this study area are: 2.8e−4 for M ≥ 3
and 3.8e − 6 for M ≥ 5. In comparison with the annual earthquake production rates of western
Canada case study area (Section 3.1), this study area is roughly 310 for M ≥ 3 and 140 for M ≥ 5
times more active.
Apparent quiescence volumes at shallow depths can be identified in the 3D PI analysis result

(Figure 6(b)). Even when the dZ value is changed to 10 km or when the analysis depth range is
changed from 0–30 to 0–60 or 0–100 km, the apparent quiescence volumes can still be identified.
On the other hand, the quiescence volumes are not visible in the 2D analysis result (Figure 6(c)).
Also, there are a few hotspots visible near the epicenter of the 1999 Chi-Chi earthquake in the 3D
analysis result, while they are not visible in the 2D analysis result.
PI anomalies or hotspots (Figure 6(c)) are more spread out than those of RI anomalies

(Figure 6(d)), although the hotspots around the 1999 Chi-Chi earthquake are not visible in the
2D PI analysis result of the original method with this particular (not optimal) set of observational
parameters (Figure 6(c)). In contrast, RI anomalies highlight only areas that have relatively high
seismic activity for the long time period that of [t0, t2), e.g. Figure 6(d).
As can be seen in Figure 6(e) of �S′ anomalies, where we would find the drifts of state vectors, we

can recognize that there were some activities near the imminent 1999 Chi-Chi earthquake sequence.
In an alternative view of the same system, when a small degree of temporal clustering treatment
is performed (Alternative PI Method, Figure 6(f)), some hotspots around the Chi-Chi earthquake
sequence become visible. Target magnitude for the optimal 2D PI forecasting in this particular
study area is suggested to be around 6.0, as summarized in Table IV. The Alternative PI Method
appears to perform well for this particular study setting also.
In general, PI (2D) forecasting appears to perform better with depth, and at the same time, the

difference between the performance of the Alternative PI Method and the Original PI Method
becomes small with depth (Table V).

3.3. Retrospective forecasting of imminent great earthquake rupture areas in
Java–Sumatra region

The 2004 Sumatra (Indian Ocean) Earthquake Sequence was the fourth largest instrumentally
recorded earthquake to occur since 1900 [54]. The earthquake occurred along a ∼ 1000 km stretch
of the northern Sumatra subduction zone, which was sparsely covered by seismological obser-
vation networks at the time of the event occurrence. In this case study, we apply the PI method
to two independent sets of catalogs: (1) Centennial Earthquake Catalog and (2) ANSS Catalog
for the same geographical area, in order to see the coherence [21] of PI analysis results. Map
ranges are: longitude: 91 to 117; latitude: −12 to 12, the depth range: 0 to 650 km, and the same
magnitude range M ≥ 5.5. Owing to the limited availability of data particularly in time, however,
unequal durations of the catalogs were employed in the analyses (1964–2002 for Centennial Catalog;
1970–2007 for ANSS Catalog). Mapping parameters used for this region are: Target Magnitude ≥
7.5, dX = 1◦, dZ = 25 km (Changing dZ value to 50 km, for example, does not change the
results significantly), and the change time is set for [t1, t2) : 1983/1/1–1994/1/1. Here, we apply
the PI method to forecast the potential areas of stress accumulation before great target magnitude
events.
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Figure 7. Analysis results for Java–Sumatra region: (a) Centennial catalog
(M ≥ 5.5) and (b) ANSS catalog (M ≥ 5.5).

Figure 7 summarizes the analysis results for Java–Sumatra region (On the left, Figure 7(a), the
results from using the Centennial Earthquake Catalog are shown, and on the right, Figure 7(b), the
results from using ANSS Catalog are shown.) From the top of the figure, displayed are: 2D and
3D TM metric analysis results using the same mapping parameters as those for the PI analyses, the
time series of annual M ≥ 3 seismicity rate from the corresponding data set, and followed by the
2D/3D and PI/RI analysis results.
Large kinks on a TM curve are due to sudden changes in the energy of the system, due to

detection level changes or large earthquakes with numerous aftershocks [16,25,26]. Both catalogs
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are behaving in piecewise effectively ergodic manner up until 1994, when two M ≥ 7.5 shallow
earthquakes occurred in the analysis area (in 1994 and 2000) before the 2004 Sumatra earthquake.
PI and RI analysis results from using different catalogs: Centennial and ANSS, overall look the

same in either set. What is striking is that the apparent stress accumulation volumes contain the
imminent rupture surfaces of great earthquakes to be forecast, found in either set of the results (cf.
Figure 7). The PI method is a good proxy for stress changes (e.g. [10]). As earthquake rupture
occurs over a large region, not a single point, we would need an alternative forecast verification
scheme that takes into account this discrepancy, particularly for these large target events (M ≥ 7.5,
as in this case).

4. DISCUSSION

Analysis results above illustrate that the Pattern Informatics (PI) approach is applicable in 3D,
and support the hypothesis that there is a consistent improvement of PI forecasting performance
in 3D over 2D analysis. The results of retrospective analyses (retrospective forecasting of mod-
erate magnitude events) also demonstrate that the 3D PI approach is particularly advantageous
in detecting vertically overlapped seismicity anomalies. Moreover, results support the idea that
the forecasting performance would improve when the analyses were carried out on an effectively
ergodic system [16].
Case studies (Sections 3.1 and 3.2) demonstrate typical examples of PI forecasting for moderate

magnitude events. The forecast performances were excellent for example Section 3.1 even without
the application of a Moore neighborhood option to account for event location errors, whereas for
the case in Section 3.2, alternative treatments were necessary. Notable differences between the two
case analyses include ensemble size and earthquake production rate.
In view of PI index calculation, effective ergodicity of a system can appear different (Figure 8).

Figure 8 shows the inverse TM metric curves of a point process being observed, while the state
vectors for [t0, t1) and [t0, t2) are calculated as in Steps 3–5, Section 2.2. Uniform random process
would be viewed as effectively ergodic in both sweeps with the base-year shift (Step 5, Section 2.2):
‘TM1’ and ‘TM2’ (as in Figure 8(a)). An earthquake sequence with numerous aftershocks in the
change time [t1, t2) would cause the effective ergodicity of the process to be punctuated as shown
in an extreme example, Figure 8(b). In view of the state vector calculation in TM2, the rate at
which the phase space is explored is significantly altered in appearance. When temporal clustering
shorter than one day is eliminated, as in the Alternative PI Method, the rate at which the phase
space is explored is mostly restored as it should be, Figure 8(c). In this manner, we can make further
improvements to the current PI approach.

4.1. 3D vs 2D PI forecasting performance

Apparent quiescence volumes identified in the 3D PI analysis result for Taiwan region (Figure 6(b))
are not visible in the 2D analysis (Figure 6(c)). The reason for the latter is at least partly due to the
cancelation of vertically stacked anomalies in the opposite sense (shallow quiescence volumes vs
deep activation volumes), as demonstrated in Figures 1–4 using a synthetic model. A 3D analysis
clearly provides more information about the system being investigated (in depth), hence allowing
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Figure 8. Effective ergodicity in view of the PI index calculation, on synthetic catalog: (a) effective ergodicity
in view of the PI index calculation on uniform random process; (b) effective ergodicity in view of the PI index
calculation on uniform random process with an aftershock sequence in the change time [t1, t2); and (c) effective
ergodicity in view of the alternative PI index calculation (Alternative PI Method) on uniform random process

with an aftershock sequence in the change time [t1, t2).

an improvement in forecasting performance. For the purpose of performance comparisons using
ROC diagrams, 3D PI analysis results were collapsed into a 2D map area equivalent to that of the
corresponding 2D analysis results (e.g. Figure 4(c)). 3D PI forecasting apparently outperforms a
2D PI analysis. 3D PI analysis is particularly advantageous over 2D analysis in resolving vertically
overlapped seismicity anomalies in a highly complex tectonic environment such as Taiwan region.

4.2. Ensemble size vs forecasting performance

Correlation is found between the forecasting performance and the ensemble size for PI analyses,
although such correlation does not exist in analyses of ideally uniform random synthetic data.
The correlation likely comes from the facts that seismicity tends to occur in confined areas along
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preexisting weaknesses in the crust, particularly near plate boundaries, and that the proportion of
relatively inactive cells would increase rapidly with increasing ensemble size in a natural fault
system. Ensemble size can be adjusted by altering the applicable study volume (map ranges in
longitude, latitude, and depth) or by varying the binning units (dX or dZ ). As long as the earthquake
data set in a study area is homogeneous (and ideally complete,) making adjustments to the ensemble
size would be a valid procedure to optimize the PI’s forecasting performance. As the ensemble size
is increased, the representativeness of statistical ensembles utilized in the PI or TM calculation
improves, or the robustness of PI forecasting performance would enhance, even with the presence
of large earthquake sequences in the record. This is in accord with the observations made by
Tiampo et al [16], in that the use of appropriate spatial, temporal, and magnitude parameter ranges
for ergodic behavior of the system in a study ensures that the spatial and temporal averages are
stationary, resulting in better performance of the PI method.

4.3. Event depths vs forecasting performance

Aside from the technical aspects of performance improvements in moderate magnitude event fore-
casting, there appears to exist a natural condition where (2D) PI forecasting performance systemati-
cally becomes ‘influenced’ somehow, possibly due to dissimilarities in conditions (such as pressure,
temperature, and structure/geometry) and materials. In Table V (Taiwan case), we saw that PI’s
performance improved with depth, while at the same time, the difference between the performance
of the Alternative PI Method and the Original PI Method became very small with depth. This set
of observations supports the idea that intermediate depth seismicity is often accompanied by fewer
dependent events compared with shallower mainshocks of the equivalent magnitudes [57], and in
that sense the seismicity at depths is comparatively less clustered through a natural mechanism.
Furthermore, the results demonstrated that the gradual improvement of detection level in depth in
earlier records and the default depths (5 or 10 km) assigned for inadequately located events (e.g.
Section 3.2; Taiwan case) had negligible effects on the PI’s performance.

4.4. PI vs RI

PI method characterizes spatio-temporal changes in seismicity rate, which is a good proxy for stress
changes, Tiampo et al. (e.g. [10]). As can be seen in Figures 7(a) and (b), regardless of the difference
in the catalog sources: Centennial or ANSS, stress accumulation is apparent in large volumes that
contain imminent rupture surfaces (cf. [58–60]). As earthquake rupture occurs over a region and
is not a single point, we would need an alternative forecast verification scheme, particularly for
these large target events (M ≥ 7.5 as in this case example, Section 3.3). Similarly, the time window
employed in these case analyses is too short to compare the forecasting performance between PI
and RI. Both methods detect significant amount of activation prior to great earthquakes, denoted
as spherical dots in the example maps.
Holliday et al. [28] analyzed the same region for temporal fluctuations in the forecasting skill

difference between two measures: the PI and RI, using a Pierce difference function d A = (PSSRI −
PSSP I ), with the understanding that the PI and RI are sensitive to different effects. They found that
large to great earthquakes (in California and Sumatra region) tend to follow a period of positive
d A values, where RI’s performance significantly exceeds that of the PI in relative terms. It would
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be interesting to pursue the research on the timing of these d A peak occurrences and the tectonic
implications of such observations, as the d A peaks also appear to coincide with ergodicity breaks
on inverse TM metric curves.
As seen in Section 2 using the synthetic catalogs, the PI is inherently different from the benchmark

RI measurements in its ability to detect both seismic activation and quiescence, while RI only
provides long-term relative intensity in seismic activity. Therefore, the occurrence of stress shadows
(e.g. [61]) would be detected as short-term to intermediate-term PI anomalies but not as positive
RI anomalies.

4.5. Limitation of grid-based binary forecasting for moderate magnitude events

Grid-based binary forecasting experiments e.g. [40] have taken an important step toward the devel-
opment of reliable earthquake forecasting schemes. Nevertheless, we would need to keep moving
ahead for non-grid-based approach, perhaps. Grid-based approach considers an earthquake as a
point and is based on the assumption that a target event would occur exactly in a single cellular
region with high probability. In order to forecast events of certain magnitudes and greater corre-
sponding to the ones above the scaling break in rupture surface area and magnitude relation [62,63],
a different approach for forecast verification might be necessary (e.g. Figure 9). This is beyond the
scope of the current study, and will be explored elsewhere.
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Effective ergodicity of the system under investigation is one of the key factors in improving the
PI application in studies of natural seismicity patterns [16,26]. As seen in the case analysis results
(Figure 5, 6, and 7), effectively ergodic periods exist in most natural fault systems investigated,
occasionally punctuated by apparent and sudden bursts of energy release as dependent earthquakes
following large events [16], which could extend beyond the discretization unit-length of a target
magnitude event point process. In addition, nonlinear changes of slope on the inverse TM metric
curve might be attributed to a gradual change in the operational condition of a seismic network,
and effects of such rate changes are currently investigated by utilizing both synthetic and natural
seismicity data. A method is also being developed to minimize the effects from ergodicity breaking
processes on PI index calculation. Selecting the optimal set of mapping or observational parameters
(e.g. dT value) would help to improve our PI forecasting. These investigations are underway.

5. CONCLUSION

The PI approach is applicable in 3D, and the results of retrospective forecasting of moderate mag-
nitude events demonstrate that 3D PI approach is particularly advantageous in detecting vertically
overlapped seismicity anomalies. Results also support the hypothesis that the forecasting perfor-
mance would further improve when the analyses were carried out on a data set that effectively
satisfies the statistical ergodicity and independence requirements of point processes [1–3,16,26].
Calibrating the forecasting tool for each study area with a suitable set of mapping parameters in
space, time, and magnitude would also help to improve the PI’s forecasting performance. In ad-
dition, an alternative forecast verification scheme is necessary, particularly for great earthquake
forecasting, which would need to appropriately consider both the geometrical asymmetry of main-
shock ruptures and of alarm volumes. Finally, statistics of precursory activity durations, spreads,
and magnitudes, in connection with the specific sets of mapping parameters for studies in various
tectonic environments would need to be accumulated, which in turn would help to determine the
suitable set of observational parameters and for further improvements to the forecasting perfor-
mance via PI approach.
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