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[1] We analyze the Hurst exponent H and a power-law
exponent B obtained from frequency-size distributions of
avalanche events in the long-range connective sandpile
(LRCS) model and study the relation between those two
exponents. The LRCS model is introduced by considering
the random distant connection between two separated cells.
We find that the B-values typically reduce prior to large
avalanches while the H-values increase. Both parameters
appear precursory phenomena prior to large avalanche
events. Most importantly, we show that the LRCS model
can demonstrate an interesting negative correlation between
the B- and H-values, which has been frequently implied in
observations of seismicity and firstly verified in our present
simulations. Citation: Lee, Y.-T., C.-C. Chen, T. Hasumi, and

H.-L. Hsu (2009), Precursory phenomena associated with large

avalanches in the long-range connective sandpile model II: An

implication to the relation between the b-value and the Hurst

exponent in seismicity, Geophys. Res. Lett., 36, L02308,

doi:10.1029/2008GL036548.

1. Introduction

[2] In the estimation of seismicity tendency, the Gutenberg-
Richter b-value and the Hurst exponent are two param-
eters which are widely used. Many literatures considered the
b-value as a monitoring index related to the forthcoming
large earthquakes [Smith, 1986; Urbancic et al., 1992;
Wiemer and Wyss, 1994; Henderson et al., 1994; Legrand
et al., 1996; Henderson et al., 1999; Wyss et al., 2004; Wu
and Chiao, 2006]. Reductions in the b-values before large
earthquakes have been reported in many researches. The
reduced b-value is probably caused by the quiescence of
smaller earthquakes and/or the activation of moderate
earthquakes [Chen, 2003; Chen et al., 2005; Wu and Chiao,
2006]. Another parameter, the Hurst exponent, is based on
the rescaled range (R/S) analysis, which was proposed by a
hydrologist H. E. Hurst [Hurst, 1951]. The R/S analysis can
figure out the statistical properties of time series and has
also been used to analyze time series of earthquakes as the
attempt on predicting future earthquake trends. Many groups
of researchers have applied the R/S analysis to investigate
the long-term correlation of seismicity [Cisternas et al.,
2004; Goltz, 1997; Lomnitz, 1994; Telesca et al., 2001; Chen
et al., 2008c]. Each research group constructed their own

time series for the R/S analysis from the earthquake cata-
logues. For example, Cisternas et al. [2004] had constructed
the cumulative seismic moment as a function of time for
conducting the R/S analysis of the seismicity in the Marmara
Sea Region, Turkey. They showed the time variation of
seismicity is persistent with the Hurst exponent H of 0.82.
Also, Telesca et al. [2001] had analyzed the temporal fluc-
tuations in H for the waiting time of earthquakes occurred in
southern Italy and found the values of H range from 0.5 to
0.92. They also found a good correlation, with a correlation
coefficient about �0.64, between the spectral power-law
exponent of geo-electrical signals and the Hurst exponent
of seismicity in Italy.
[3] In the present work, we calculate the Hurst exponent

H and the power-law exponent B of the frequency-size
distributions of avalanches in a modified sandpile model,
the long-range connective sandpile (LRCS) model [Chen
et al., 2008a, 2008b; Lee et al., 2008]. The upper-case B is
exclusively used for the scaling exponent of the power-law
frequency-size distribution of avalanches for differencing
from the low-case b in the Gutenberg-Richter relation
[Gutenberg and Richter, 1949]. The LRCS model differs
from the original sandpile (BTW) model in the aspect of
releasing grains to nearest neighboring cells. The LRCS
model can release storing energy to remote cells, which is
reminiscent of seismic wave propagations [Chen et al., 2008a,
2008b; Lee et al., 2008]. We show the increase in H values
accompanied with the decrease in B values prior to large
avalanches, which mimics the observed precursory phenom-
ena of the Gutenberg-Richter b-values in real seismicity. Most
importantly, we present the negative correlation between B
and H in the LRCS model.

2. Long-Range Connective Sandpile
(LRCS) Models

[4] Bak et al. [1987] proposed a concept of self-oragnized
criticality (SOC) using a sandpile model, denoted here by
the BTW model, and showed that the BTW model reaches a
critical state without the need to fine-tune system para-
meters. Since then, the study of SOC has been investigated
by simulating the BTW model and many modified versions
of the BTW model. We have previously proposed a long-
range connective sandpile (LRCS) model by introducing
randomly remote connections between two separated cells
[Chen et al., 2008a, 2008b; Lee et al., 2008]. The
simulation was performed in the ‘‘stop-and-go’’ mode.
When accumulated grains at one cell reached the threshold
amount of 4 the redistribution process occurred. One of the
original nearest-neighbor connections faces a connective prob-
ability Pc of redirecting to a randomly chosen, distant cell.
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The original nearest-neighbor connection was thus replaced
by the randomly chosen mesh which might be far from the
toppling cell.
[5] The LRCS model differs from the BTW model in

view of releasing grains to four nearest neighboring cells.
By using a self-adapted probability threshold Pc of remote
connection, the LRCS model can demonstrate the inter-
mittent criticality, in which the sandpile approaches and
retreats quasi-periodically from the critical state [Chen et al.,
2008b]. We assumed that Pc depends strongly on topo-
graphic change induced by the latest event [Chen et al.,
2008b; Lee et al., 2008], which had simply been defined as
Pc (i + 1) = [DZ(i)/aL2]3 (a ffi 1.25). DZ(i) and L2 are
topographic change due to the latest event and the system
size, respectively. There may exist many different ways to
exactly define Pc for different physical systems. However,
to the end of demonstrating the intermittent criticality in the
sandpile model, we found that the exact choice of formula-
tion for Pc is not crucial [Chen et al., 2008b]. The LRCS
system after a large avalanche can thus evoke a higher
connective probability Pc value, motivated by that a more
active system will have higher probability to establish long-
range connection due to fault activity, the change of pore
water pressure or dynamic triggering of seismic waves. For
example, a larger earthquake generates more radiated energy
carried by seismic waves, thus, is more capable of dynam-
ically triggering remote tremors far away the main shock. In
those remotely triggering cases, stress perturbation due to
seismic waves is considered as the immediate cause of trig-
gered events.
[6] For the LRCSmodel with self-adapted Pc, the dynamic

variable of the spatially averaged amount of grains on board
hZi(t) (=(

PL2

i¼1 Zi)/L
2, blue line in Figure 1) is often punc-

tuated towards a smaller value by a large event. The large
fluctuation in hZi(t) is an important feature mimicking the
intermittent criticality [Sammis and Smith, 1999; Rundle
et al., 2000; Castellaro and Mulargia, 2002; Main and Al-
Kindy, 2002; Goltz and Böse, 2002]. In the LRCS model,
large avalanches are then followed by a period of quies-
cence and a new approach back toward the critical state
(Figure 1). Such process is similar to the dynamical process
of the earthquake fault system which repeats by reloading
energy and rebuilding correlation lengths towards criticality
and the next great event [Rundle et al., 2000]. For more
details about the LRCS model, we refer the readers to our
previous papers [Chen et al., 2008a, 2008b; Lee et al., 2008].

3. Calculations of B- and H-Values
for Avalanches in the LRCS Model

[7] A numerical sandpile model with 106 throws of single
grain on a square grid of 150 by 150 meshes has about
375,000 avalanche events. We calculated the power-law
exponent B of the frequency-size distributions of avalanche
events and the Hurst exponent H of avalanche sizes using
every 500 events. The avalanche size was defined as the
total number of cells which have reached the grain threshold
of 4 and toppled during a complete avalanche. To trace
variations in B and H with respect to time the sliding
window technique with an overlap of 450 events is used,
which means that we selected 500 events to calculate Bs
and Hs then shifted 50 events to calculate the next values
of B and H. For the calculation of B, we applied the data
binning technique proposed by Christensen and Moloney
[2005] to reduce the noise effect of large avalanches and
then adopted the weighted least-square regression to fit the
frequency-size distribution. As for the calculation of H, a
brief summary of the R/S analysis is given below. The R/S
analysis utilizes two factors: one is the range R, which is
the difference between maximum and minimum amounts of
accumulated departure of time series from the mean over a
time span t, and the other is the standard deviation S over
the time span. The so-called rescaled range is exactly the
ratio of R and S, i.e., R/S. Analyzing a variety of time series
of natural phenomena, the toppling size of avalanche for
example, it has been concluded that the ratio R/S is very
well described by the empirical relation (R/S)(t) = (t/2)H,
where H is the Hurst exponent. For the independent random
process, with no correlations among samples, H = 0.5. The
observational time series is persistent for H > 0.5 whereas
the sequence shows the anti-persistent behavior for H < 0.5.
The concepts of persistent and anti-persistent memories in
time are well defined for non-linear processes [Feder, 1988].
[8] Figure 1 shows the B-value variation (red line) and the

Hurst exponent H variation (green line) with different time
windows obtained from the LRCS model. Error bars show
the 95% confidence intervals. As an example, Figure 1 dis-
plays the result of 2�104 iterations among 106 from the
LRCS model, showing five sequences of system-wide ava-
lanches with sizes close to L2 (=22500). B ranges from 0.3
to 1.6 and H from 0.3 to �1. We had found, in the LRCS
models with smaller meshes of 50 by 50 and 100 by 100,
the power-law exponents (the B values) derived from the
frequency-size distributions of avalanches decrease before
large events [Lee et al., 2008], which is reminiscent of pre-

Figure 1. For a square grid of 150 by 150 cells, blue line
represents the dynamic variable of the average topographic
height of the sandpile, hZi(t), in the LRCS model with self-
adapted Pc. Green and red lines are the Hurst exponent and
the power-law exponent of frequency-size distribution,
respectively. Dash lines show their 95% confidence
intervals. Also shown are occurrence times of avalanches
(black bars) with sizes larger than 103.5.
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cursory Gutenberg-Richter’s b-value reduction before large
earthquakes [Smith, 1986; Urbancic et al., 1992; Wiemer
and Wyss, 1994; Henderson et al., 1994; Legrand et al.,
1996]. Here, by using the present larger grid size of sand-
piles, we again confirm the precursory declines in the
B-values. On the other hand, importantly, we find that
the change of H has fluctuation in the opposite sense to
the variation in B. While the B usually increases following a
large avalanche, the H usually reduces. The H-value then
increases prior to the next large avalanche. Comparing B
and H in Figure 1, we can find an interestingly negative
correlation between B and H. The fact that B-values typi-
cally reduce and H-values increase prior to large avalanches
reinforces the view that there is possibility of detecting
precursors of great events in the LRCS model [Lee et al.,
2008]. A simple statistical counting shows that about 90%
of those system-wide events exhibit precursory phenomena
of reduction in B and increase in H. In Figure 2, for com-
parison, we present results obtained from the original BTW
model. Neither precursory phenomena prior to large ava-
lanches nor negative correlations between B and H could be
found in the original BTW sandpile model with a square
grid of 150 by 150 meshes. The values of H calculated from
the BTW model are almost near 0.5, indicating a lack of
memory effect, together with the B-values around 1.
[9] To make the relation between B and H clearer, we plot

the points of (B, H) in a scatter graph showing the corre-
lation between these two parameters (Figure 3). Blue circles
and red crosses in Figure 3 represent results obtained from
the LRCS and BTW models, respectively. It is true that the
points of (B, H) from the LRCS model (blue circles) are
somewhat distributed messily and the statistical correlation
coefficient is only about �0.52. Statistically the averaged

H dependence on B (black squares in Figure 3) obtained
from a set of B-bins with a step of 0.1 could help visualize
the negative correlation between them. Nevertheless, when
comparing with the result from the BTW model (red crosses),
they demonstrate a good dependence of these two parameters
upon each other and indicate the strikingly negative corre-
lation between B and H in the LRCS model.

4. Conclusion and Discussions

[10] The LRCS model considering randomly remote con-
nections demonstrates the state of the intermittent criticality,
where a quasi-periodic behavior of approaching and retreat-
ing from the criticality exists. In the present paper, we show
that both the power-law exponent B and the Hurst exponent
H are relevant to detect precursory phenomena prior to a
forthcoming large event. Note that as the B-value starts to
decrease the H-value starts to increase, indicating that the
system starts to prepare for the next large event. The dynamic
variable hZi(t), i.e., the averaged height, in the LRCS model
moving up to the critical state seemingly experiences the
occurrence of a large avalanche. Such precursory phenom-
ena were frequently reported in real seismicity.
[11] The decreasing B indicates that the number of mod-

erate to large avalanches increases as the system approaches
the critical state. The increase of the H-value can be inter-
preted as an increase of the degree of the persistence of larger
and larger avalanches in the LRCS model. The long-range
connective probability Pc undoubtedly plays a crucial role
to the precursory phenomena in the LRCS model. When the
long-range connection happens to the system, it facilitates
an initiation of another local avalanche in the other end
of the remote connection and nucleates new local avalanche
which thus averagely increases the avalanche activities
[Lahtinen et al., 2005]. Since the Pc in our LRCS model

Figure 2. For a square grid of 150 by 150 cells, blue line
represents the dynamic variable of the average topographic
height of the sandpile, hZi(t), in the BTW model. Green and
red lines are the Hurst exponent and the power-law exponent
of frequency-size distribution, respectively. Dash lines show
their 95% confidence intervals. Also shown are occurrence
times of avalanches (black bars) with sizes larger than 103.5.

Figure 3. Scatter plot of the Hurst exponent H and the
power-law exponent B of frequency-size distribution obtained
from the avalanche events of the LRCS (blue circles) and
BTW (red crosses) models. Black squares are the average
H(B) dependence obtained from a set of B-bins with a step
of 0.1. Black dotted lines show the corresponding standard
deviations.
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depends on the latest event size, it thus gives rise to a posi-
tive feedback in the system. Large event induces high prob-
ability releasing energy to far sites, which furthermore causes
a chain of local reactions in toppling around the sandpile
model. Plausibly the large-scale correlation in the spatial
distribution of energy gradually grows [Uritsky et al., 2004],
which consequently produces a series of larger and larger
events.
[12] Also similar to real seismicity, while the BTW model

has a high percentage of more than 65% for the H-value
around 0.5, the LRCS model has more than 70% of the Hs
larger than 0.6. Chen et al. [2008c] have reported that the
Hurst exponent of slip data in real earthquake catalogue
usually possesses a value greater than 0.6, showing the
persistent memory effect. It, however, should be noticed that
the estimated H values are probably biased for sandpile
models with different grid sizes since finite grid sizes may
change the fractal properties of the investigated time series.
[13] As an important result, the changes in the opposite

sense for the B- and H-values have been found in the
intermittent critical system of the LRCS model. We have
furthermore simulated a larger size of square grid with
250 by 250 meshes and found the similar negative
correlation between B and H. Discussion on the origin of
the negative correlation between the B- and H-values of
earthquake time series is fundamental. On the basis of the
fractional Brownian motion (fBm), Voss [1989] presented
the correlation between the H and the spectral density
exponent b, i.e., b = 2H + 1. By transforming spectral
densities S(f) and frequency f to seismic moment E and
number of events N(E), respectively, Wu [2001] yielded the
power-law frequency-size distribution N(E) � E�B and the
relation of B = 1/b. Consequently an inverse correlation,
looked like the negative correlation, between H and B could
be obtained. On the other hand, Frankel [1991] developed a
model of complex self-similar rupturing where an earth-
quake is composed of sub-events with different sizes. By
assuming that sub-events on a fault were proportional to
fault strength, he showed the fractal dimension D of sub-
events is controlled by a fault strength, which is scaled by a
distance along the fault. By analyzing stress along a fault
plane and comparing the correlation between the number of
sub-events and fault radius, he furthermore derived the
correlation between Gutenberg-Richter’s b-value and D: b =
1.5D/(3 + H), where the Hurst exponent H describes the
scaling of stress drop with source radius. Since B � b,
again, an inverse correlation between H and B could be
obtained.
[14] Also interestingly, Telesca et al. [2001] proposed a

new approach to investigate the correlation between elec-
trical signals and earthquakes. They found a good correlation
between the spectral power-law exponent a of geo-electrical
signals and the Hurst exponent H of seismicity in their
studied area. The correlation coefficient of a and H is about
�0.64 in their study. In the present study we revealed a
similar negative correlation between the Hurst exponent of
avalanches and the power-law slope of frequency-size distri-
butions of events. Whether there exists any connection be-
tween these studies remains an interesting debate.
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