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Propagating slip pulses in earthquake ruptures (Heaton, 1990) are studied based on a one-dimensional N-
degree-of-freedom dynamical spring-slider system with a constant ratio of static to dynamic frictional forces.
Results show that for almost all cases in the study, the rise time of ruptures at a particular site is much
smaller than the duration of ruptures along the whole fault. A propagating slip pulse is generated along the
fault. Hence, simulation results are in agreement with Heaton's propagating slip-pulse model.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Heaton (1990) found that the rise time of a slip at a point on a fault
is much shorter than the duration of rupture over the entire fault, and
the distribution of rise times over the fault plane is non-uniform. This
shows another kind of slip complexity. Since then, several authors also
claimed the same observations (Wald et al., 1991; Wald and Heaton,
1994; Nakayama and Takeo, 1997; Nielsen and Madariaga, 2003).
Heaton (1990) interpreted the observations using a propagating slip-
pulse model (or a self-healing model) with velocity-dependent
dynamic friction. In his model, only a relatively small strip,
immediately behind the rupture front, slides at any instant. Theoretical
studies of thepropagating slip pulsewerealsomadebyothers (Andrews
and Ben-Zion, 1996; Beeler and Tullis, 1996; Cochard and Madariaga,
1996; Perrin et al., 1996; Zheng and Rice, 1998; Nielsen et al., 2000;
Lapusta et al., 2000; Ben-Zion and Huang, 2002; Nielsen andMadariaga,
2003; Coker et al., 2005; Rice et al., 2005). From the laboratory
experiment, Lykotrafitis et al. (2006) observed the self-healing pulse-
like shear ruptures. Biegel et al. (2008) studied the effect of off-fault
damage on the velocity of a slip pulse from experimental work. In
addition to the propagating slip-pulsemodel, an alternativemechanism
to arrest slip of earthquake sources due to geometrical heterogeneity of
slip has also been taken into account by some authors. Beroza and
Mikumo (1996) stressed that the pre-existing stress and/or strength
heterogeneities on the fault planemight provide an adequate geometri-

cal constraint to interpret short rise times. Day et al. (1998) claimed that
the self-healing model is not necessary to explain earthquake
kinematics. Ide and Takeo (1997) proposed that slip-weakening friction
rather than velocity-weakening friction controls fault dynamics. This
would imply that velocity-weakening friction is not a factor in produ-
cing short rise time.

We here examine the hypothesis of propagating slip pulses in
earthquake rupture. Instead of utilizing velocity-dependent dynamic
friction, we use a one-dimensional (1D) N-degree-of-freedom spring-
slider model (Burridge and Knopoff, 1967), in the presence of
constant dynamic friction, to approach this problem.

2. One-dimensional spring-slider model

The 1D N-degree-of-freedom dynamical spring-slider model
(Fig. 1) consists of N sliders of equal mass, m, and springs with one
slider being linked by a coil spring of strength, KC, with the other. Each
slider is also pulled by a leaf spring of strength, KL, on a moving plate
with a constant velocity, Vp. At time t=0, all the sliders rest in
the individual equilibrium states. The i-th slider (i=1, …, N) is
located at position xi, measured from its initial equilibrium position,
along the x-axis. Each slider is subjected to a static frictional force, FSi,
at rest. Elastic strain of each slider gradually accumulates due to the
moving plate. Once the elastic force at a slider is greater than the static
frictional force, the slider will move subject to the dynamic frictional
force, FDi. Then the equation of motion for the moving slider is

m d2xi = dt
2

� �
= KC xi+1−2xi + xi−1

� �
−KL xi−Vpt

� �
−FDi: ð1Þ
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The classic frictional lawwith a direct drop of FSi to FDi as displayed by
the solid lines in Fig. 2 is considered. Hence, FDi is set to be FSi /ϕi. For
simplification, only a fixed value of ϕi is taken for all sliders in the
followings. The plate velocity Vp is usually small and in the order of
~10−12m/s.

Eq. (1) can be further normalized by adopting the non-dimensional
variables: S=KC/KL, ωo=(KL /m)1/2, and Do=Fo/KL. Wang (1995)
called the quantity S the stiffness ratio. The quantity ωo/2π is the
frequency of oscillation of a single slider attached to a leaf spring in the
absence of friction. Do is the characteristic displacement of a slider
exerted by a force Fo through a spring with the strength of KL. Larger Fo
yields longer Do when KL is fixed. Obviously, Do and ωo are two

significant units to scale the spatial coordinates, xi, and time, t,
respectively. Let Xi=xi /Do and τ=ωot. This then leads to dxi /dt=
[Fo/(mKL)1/2]dXi /dτ, d2xi /dt2=(Fo/m)d2Xi /dτ2, and Vi=dXi /dτ, to-
gether with the normalized (dimensionless) quantities υi=Vi /Doωo

and υp=Vp/Doωo. Do/Vp is the loading time for a leaf spring to stretch
enough for overcoming the static frictional force, and υp is equivalent to
the ratio of the slipping time ωo

−1 to the loading time. Based on the
above-mentioned quantities, Eq. (1) is normalized to the following
form:

d2Xi = dτ
2 = S Xi+1−2Xi + Xi−1

� �
− Xi−υpτ
� �

−FDi = Fo: ð2Þ

Twomain parameters controlling the motion of a slider are S and υp. S
represents the level of conservation of energy in the system. Larger S
shows stronger coupling between two sliders than between a slider
and the moving plate. This results in a smaller loss of energy through
the KL spring, thus indicating a higher level of conservation of energy
in the system. Since the fault system is a dynamically coupling one
with dissipation, S must be a non-zero finite value.

The frictional force is defined only for positive velocities. This means
that no backward motions in the fault are allowed. The modeling
procedure is simply described here. First, we apply the Runge–Kutta
numericalmethod(Press et al., 1986) to solveEq. (2)with friction forward
in time until all sliders have come to rest. Secondly, we scan all sliders to
find the sliders forwhich the forces are closest to the individual FSi. Thirdly,
we add again a loading force from the moving plate to the system, and
then repeat the first process. Also, the periodic boundary condition has
been utilized to reduce the finite-size effect in numerical calculations.

A modeled event is defined to be a set of connected slipped sliders
during a short time interval. Basically, there are small,moderate, and large
events. A small event consists of one slipped slider or a fewslipped sliders.
Themoderate event is composed of several tens of sliders. The large event
consists of more than 100 sliders. The event which is composed of all
sliders is called the system-wide event, which is equivalent to the
delocalized event used by Carlson and Langer (1989a,b), hereafter.

3. Results

The value of S, which best models the earthquake fault, has not yet
been well determined. Distinct values were used by different authors.

Fig. 1. An N-degree-of-freedom dynamical spring-slider system.

Fig. 2. Schemes for the constant dynamical frictional force (solid line) and the velocity-
dependent weakening-hardening frictional force (dashed lines). FS=the static
frictional force; ϕ=the ratio of static to dynamic frictional forces; VC=the critical
velocity having the lowest frictional force.

Fig. 3. Temporal variation in (a) slip, (b) velocity, and (c) force at some slipped slider. The horizontal line in the bottom plot denotes the static friction the slider bears. After an early
short slip, the slider came to a rest with an elastic force less than the static friction. Then, at T=~1.25, the elastic force reached over the level of static friction and the slip occurred
again.
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Carlson and Langer (1989a,b) used large values of ~1000. Knopoff et al.
(1992) and Xu and Knopoff (1994) used very small values of 0.625 to
2.632. The values of S used byWang (1991, 1995, 1996, 1997)were less
than 120. Based on the frequency–magnitude distribution of synthetic
seismicity, Wang (1995) argued that S ranging from 20 to 120 is
appropriate for seismicity simulations. Practical tests show that it is hard
to generate system-wide events with Sb10. Since this study mainly
focuses on the healing process of large earthquake (Heaton, 1990), two
endvalues of S, i.e., 10 and100, are thusused in simulations. Throughout
this study, the ratio,ϕ, of static to kinetic friction for all sliders is taken as
1.5 and the normalized values, FSi/Fo, of static frictional force are
randomly distributed from 0.55 to 1. Do and ωo are 1 m and 1 Hz,
respectively. The normalized plate velocity υp is ~10−12. The number,N,
of sliders is 27 (=128).

An example showing the temporal variations in slip, velocity, and
force at slipped sliders is given in Fig. 3 when S=100. The slider shown
in Fig. 3 had experienced two steps of slip during a multiple-slipped-
sliders event. In the first step, the slip is in general quite simple and

shows a sinusoidal-function form (i.e., the first waveform from T=0
through T=0.25 inFig. 3b).However, in the secondstep, the slip (i.e. the
second waveform from T=1.25 through T=3.5 in Fig. 3b) becomes
very complicated due to complexity of the N-degree-of-freedom
system.

Fig. 4 is an example of the temporal variations in velocities at 40
sliders of an event and shows the rupture process of the event. The
rupture is composed of numerous slip pulses, which propagate
outwards from the site with the lowest value of FS, and stop at the site
with larger FS. This figure also demonstrates the definition of the rise
time, TR, of a slip pulse and the duration, TD, of the whole rupture. TR is
the time span within which the velocity first increases from zero to
the peak and then decreases from the peak to zero. TD is the time
interval from the starting time of the first slip pulse to the ending time
of the last slip pulse. It is obvious that TR is much smaller than TD.

Fig. 5 shows the probability density functions (PDF) of TR/TD for
S=10 (in the dashed lines) and 100 (in the solid lines), respectively.
Meanwhile, blue color and red color are used for the system-wide and

Fig. 4. Temporal variations in velocities at 40 sliders of a moderate event, clearly showing the slip pulse propagating throughout the 40 sliders.

Fig. 5. The probability density functions (PDF) of TR/TD for S=10 and 100. Note that the horizontal axis is in the logarithmic scale. For details please refer to the text.
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non-system-wide events, respectively. In general the values of PDF
first increases with log10(TR/TD) from zero to a peak and then
decreases with increasing log10(TR/TD) from the peak to zero.
However, for the non-system-wide events, there is a second peak
near log10(TR/TD)≈0 or TR/≈1. For both the system-wide and non-
system-wide events, the PDF for S=10 moves to the right of that for
S=100. The PDF's for S=100 are similar to each other, while those for
S=10 are slightly different.

4. Discussion

Fig. 5 obviously shows that considering the non-system-wide
events as depicted by red dashed and solid lines, except for the spiky
tails with TR/TD≈1, TR/TD is much smaller than 1. It seems reasonable
that for small events with one slipped slider, TR is comparable to TD,
i.e., TR/TD≈1 as expected, whatever themodel parameters are. For the
small events, the occurrence times of the sliders are close to one
another and the number of connected slipped sliders is small. Thus, TD
cannot be much larger than TR of the individual slider. In other words,
TR/TD is less than but close to 1. Except for the small events, TR/TD is
low. For example, 99% of TR/TD of the system-wide events when S=10
are lower than 0.1 (Fig. 5). This is essentially similar to the observation
obtained by Heaton (1990). A slip pulse propagating outwards from
the initial breaking point (see Fig. 4) is also consistent with that done
theoretically by the above-mentioned authors.

As shown in Fig. 5, the statistical distributions of TR/TD for both
S=10 and 100 are much like the log-normal distribution specified
with a mode≤0.03. The distribution of non-system-wide events for
S=10 (in the red dashed line) shows a slightly higher mode of ~0.03,
while the other three distributions with the modesb0.03 are close to
one another. In other words, the mode of the statistical distribution of
TR/TD only slightly decreases with increasing S. Hence, the stiffness
ratio is only a minor factor in affecting the distribution of TR/TD.

Friction is a very complicated physical process. Dieterich (1979)
found velocity-dependence of dynamic friction. Ruina (1983) pro-
posed empirical velocity- and state-dependent friction laws. Essen-
tially, the velocity-dependent friction law includes two processes: the
velocity-weakening process and the velocity-hardening one. For the
first-order approximation, Wang (1991) considered a piece-wise,
linearly velocity-dependent weakening-hardening friction law (dis-
played by the dashed lines in Fig. 2). This is consistent with the
experimental result (cf. Tsutsumi and Shimamoto, 1997) that the
frictional force first decreases with increasing velocity at low
velocities and then increases with velocity at high velocities. The
constant dynamic friction as shown by the solid lines in Fig. 2
represents the limit case of weakening, with an infinite rate, excluding
hardening. A sudden drop of static to dynamic frictional forces
behaves like an extra force to push the slider move, andmeans that no
fracture energy is needed to promote faulting. While a finite amount
of fracture energy is requested to promote faulting for the velocity-
weakening frictional force. Hence, rapidly weakening in the dynamic
friction could be easier to increase the time of motion of a slider, thus
lengthening TR, than slowly weakening. On the other hand, a constant
dynamic friction force would be more efficient to retain the motion of
the slider than an increasing dynamic frictional force with velocity as
proposed by Wang (1991). Rapidly hardening in or suddenly
increasing the dynamic frictional force will be more capable of
resisting the motion of a slider than slowly hardening, leading to
shorter TR. Therefore, the value of TR/TD for the velocity-dependent
weakening-hardening friction law is expected to be shorter than that
of this study. This makes self-healing slip pulses exist.

5. Conclusions

On the basis of the simulations of a 1D N-degree-of-freedom
dynamical spring-slider model, we explore the possible existence of

propagating slip pulse in earthquake rupture and study the ratio TR/
TD. Simulation results show the existence of the propagating slip
pulse. The values of TR/TD estimated from this study with constant
dynamic friction are usually smaller than 0.1. This suggests that the
duration of slip at a given point on a fault is in general as short as 10%
of the overall duration of an earthquake. The present results are
essentially comparable with the propagating slip pulse observed by
and related model proposed by Heaton (1990). We furthermore
conjecture that adopting the velocity-weakening-and-hardening
friction law, which is a widely accepted form in friction, seems to be
more robust for interpreting the small rise times than the present
study of adopting the constant dynamic friction.
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