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We study the interoccurrence time distributions of events by analyzing synthetic catalogues and three
natural catalogues of the Japan Meteorological Agency (JMA), the Southern California Earthquake Data
Center (SCEDC) and the Taiwan Central Weather Bureau (TCWB). We find a universal feature, i.e. the
Weibull–log Weibull transition, in the interoccurrence time statistics. This transition demonstrates that the
interoccurrence time statistics of earthquakes possess the hybrid Weibull and log Weibull statistics. We
further find that the crossover magnitude mc

⁎⁎ from the superposition regime to the pure Weibull regime is
averagely proportional to the plate velocity. In the end of this paper we summarize a region-independent
relation, i.e. mc

⁎⁎/mmax=0.54±0.06, which represents a novel empirical relation related to the Weibull–log
Weibull transition for earthquake processes.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Statistical properties of time intervals between successive earth-
quakes (hereinafter the interoccurrence times and the recurrence
times) have been frequently studied in order to predict when the next
big earthquakewill happen. Interoccurrence times and recurrence times
mean the time intervals between the events on all faults in a region and
on a single fault/segment, respectively. Previous studies (Utsu, 1984;
Madhava Rao and Kaila, 1986; Papadopoulos, 1987; Papazachos et al.,
1987; Dionysiou and Papadopoulos, 1992; Wang and Kuo, 1998; Bak
et al., 2002; Matthews et al., 2002; Corral, 2004; Shcherbakov et al.,
2005; Abaimov et al., 2008; Enescu et al., 2008) have been mainly
focused on the determination of the underlying probability distri-
bution and the presentation of the scaling law. For instance, theWeibull
distribution (Abaimovet al., 2008), the exponential distribution (Enescu
et al., 2008), the Brownian passage time distribution (Matthews
et al., 2002), the gamma distribution (Wang and Kuo, 1998), the
generalized gamma distribution (Bak et al., 2002; Corral, 2004;
Shcherbakov et al., 2005), the log normal distribution (Matthews
et al., 2002), the Poissonian distribution (Dionysiou and Papadopoulos,
1992), the negative binomial distribution (Madhava Rao and Kaila,
1986), the Gaussian distribution (Papazachos et al., 1987) and the

Bayesian distribution (Papadopoulos, 1987) were used for candidates
of the distribution functions of interoccurrence and recurrence
times. However, the most appropriate distribution function of the
interoccurrence and recurrence time remains under debate and
open. Utsu (1984), for instance, applied four probability models to
analyze interoccurrence times for Japanese earthquakes and discussed
their significances. Recently, in the stationary regime, a unified scaling
law of the interoccurrence time statistics was proposed by Corral
(2004). Abe and Suzuki (2005) on the other hand showed that the
cumulative distribution of interoccurrence times is very well fitted by
the q-exponential distribution (qN1) corresponding to the power
law. Two underlying assumptions should be noticed in those papers:
(a) Earthquakes can be considered as a point process in space and time;
(b) There is no distinction between foreshocks, mainshocks, and
aftershocks.

Except for real earthquake data used in abovementioned papers,
due to the limitation of real earthquake data, the time-interval
statistics have also been studied by means of numerical simulations of
earthquake models (e.g. Rundle et al., 2000; Abaimov et al., 2007;
Hasumi, 2007; Hasumi et al., 2009a). Both the conceptual spring-block
models (Abaimov et al., 2007; Hasumi et al., 2009a) and the
sophisticated Virtual California model (Yakovlev et al., 2006) show
the Weibull distribution of the recurrence times. Hasumi (2007)
reported that the cumulative distribution of interoccurrence times in
the two-dimensional (2D) spring-blockmodel can be described as the
Zipf–Mandelbrot type power law which has been early observed by
Abe and Suzuki (2005).
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Yet another new statistical feature on the interoccurrence times, the
Weibull–logWeibull transition,wasvery recentlyproposedbyanalyzing
the JapanMeteorological Agency (JMA) catalogue (Hasumiet al., 2009b).
Hasumi et al. (2009b) found that the probability distribution of
interoccurrence times can be very well fitted by the superposition of
the log Weibull distribution and the Weibull distribution. The results in
Hasumi et al. (2009b) demonstrate that the interoccurrence time
statistics probably contain both the Weibull and log Weibull statistics
and, as the threshold of magnitude mc increases, the predominant
distribution could change from the log Weibull distribution to the pure
Weibull distribution. The distribution of large earthquakes obeys the
Weibull distributionwith an exponent less than unity indicating that the
process of large earthquakes is not a Poissonian process. Importantly,
thosehybrid distributions and theWeibull–logWeibull transition canbe
also found in synthetic catalogues produced by the 2D spring-block
model (Hasumi et al., 2009a). The applicability to other tectonic regions
of the Weibull–log Weibull transition however remains unsolved.
Whether or not is the Weibull–log Weibull transition universal?

In this study we investigate the interoccurrence time statistics by
analyzing the Southern California and Taiwan earthquake catalogues.
Together with the previous results from the JMA and synthetic
catalogues shown in Hasumi et al. (2009a,b), a universal Weibull–log
Weibull transition can be obtained in all of these catalogues. We also
suggest that a crossover magnitude mc⁎⁎ between the superposition
regime and the pure Weibull regime is proportional to the plate
velocity and, at the end of this paper, we elucidate its implication in
the geophysical sense.

2. Data and methodology

For studying the interoccurrence time statistics we analyzed three
natural earthquake catalogues of the Japan Metrological Agency
(JMA), the Southern California Earthquake Data Center (SCEDC) and
the Taiwan Central Weather Bureau (TCWB), as well as one synthetic
catalogue generated from the 2D spring-block model. Information on
each catalogue are listed in Table 1, where mmin corresponds to the
minimum magnitude in the catalogue and mc

0 is the magnitude of
completeness, that is the lowest magnitude at which the Gutenberg–
Richter law holds. We basically consider events with magnitude
greater than and equal to mc

0 because events smaller than mc
0 are

supposedly incomplete for recording.
The synthetic catalogue is produced by the 2D spring-block model

with the velocity-weakening friction law (Carlson et al., 1991). The 2D
spring-block model is characterized by five parameters: the stiffness lx2

and ly
2, the decrement of the friction forceα, the plate velocity ν, and the

difference between the maximum friction force and dynamical friction
force σ. We have set those parameters as lx2=1, ly2=3, α=3.5, ν=0.01
andσ=0.01, whichmake themodel reproduce several realistic aspects
of events in the Gutenberg–Richter relation with a b-value of 1
(Kumagai et al., 1999;Hasumi, 2007), the constant stressdrop (Kumagai
et al., 1999), the interoccurrence time statistics (Hasumi, 2007) and the
hypocenter interval statistics (Hasumi, 2009). For many details on
simulation of the 2D spring-block model, we refer the readers to the
papers of Hasumi (2007, 2009). Event magnitude m in the model is

defined as m = m0 + log10 ∑
n

i;j
δui;j

 !
= 1:5, where δui,j and n are the

total slip at the cell (i, j) and the total number of slipping blocks,
respectively. m0 is set at 0.7 for shifting m to a positive value. The
occurrence time of an event is the simulating time step when the
beginning block slips during an event. Thenth interoccurrence time τn is
defined as tn+1−tn, where tn and tn+1 are occurrence times of the nth
and n+1th events, respectively.

We show the schematic illustration of our analyzing procedure in
Fig. 1. The procedure is the same as that used in the previous studies
by Hasumi et al. (2009a,b) and is briefly explained as following: (a)
We divided the studied region into the spatial windows with the size
of L×L; (b) For each spatial domain, events larger than a certain
threshold of magnitude mc were considered; (c) We calculated
interoccurrence times and then performed the distribution fitting
over the interoccurrence data τi larger than h days. Note that the
procedure (a) is used for the JMA catalogue only, because its coverage
is much bigger than those of the SCEDC and TCWB catalogues. Also,
we focus on the interoccurrence time statistics for long time domain
for eliminating the aftershock effect. Although there exist several de-
clustering algorithms (e.g. Davis and Frohlich, 1991), the best way for
removing aftershocks from the catalogue remains under debate still.
We have therefore introduced the temporal parameter h in the
procedure (c) for eliminating the immediately time-correlated events.
Same strategy has been utilized in Corral (2004) and in Enescu et al.
(2008), except we set a larger h value of 0.5 for real catalogues. As for
the synthetic catalogue, the 2D spring-block model without the
viscous factor does not produce aftershocks. The procedure (c) is
therefore skipped, corresponding to h=0.

An important goal in this study is to detect the change in the
probability distribution of interoccurrence time P(τ) by varying the
magnitude thresholdmc. Here, same as the previous works by Hasumi
et al. (2009a,b), we consider five candidate functions for P(τ), namely,
the Weibull distribution Pw, the log Weibull distribution Plw, the
power law distribution Ppow, the gamma distribution Pgam and the log
normal distribution Pln. The probability density functions of these
distributions are

PwðτÞ =
τ
β1

� �α1−1 α1

β1
exp − τ

β1

� �α1
� �

; ð1Þ

Table 1
Information on the used earthquake catalogues.

Catalogue name Coverage Term Number of earthquakes mmin mc
0 mmax

JMA 25°–50°N and 125°–150°E 01/01/2001–31/10/2007 130,244 2.0 2.0 8.0
SCEDC 32°–37°N and 114°–122°W 01/01/2001–31/12/2007 10,838 0.0 1.4 5.7
TCWB 21°–26°N and 119°–123°E 01/01/2001–31/12/2007 148,155 0.0 1.9 7.1
Synthetic 50×50 (System size) – 297,040 0.0 0.3 2.8

Fig. 1. The schematic diagram for our analysis. mc1, mc2, and mc3 are different
thresholds of magnitude. We consider the interoccurrence time distribution in the time
domain τNh, corresponding to °.
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PlwðτÞ =
ðlogðτ=kÞÞα2−1

ðlogβ2Þα2

α2

τ
exp − logðτ=kÞ

logβ2

� �α2
� �

; ð2Þ

PpowðτÞ =
1

ð1 + β3τÞα3
; ð3Þ

PgamðτÞ = τα4−1 expð−τ= β4Þ
Γðα4Þβα4

4

; ð4Þ

PlnðτÞ =
1

τβ5

ffiffiffiffiffiffi
2π

p exp −ðlnðτÞ−α5Þ2
2β2

5

" #
; ð5Þ

where α

i

, β

i

and k are constants characterizing these distributions.
Γ(x) is the gamma function. i stands for an index number; i=1, 2, 3, 4
and 5 corresponding to the Weibull distribution, the log Weibull
distribution, the power law distribution, the gamma distribution and
the log normal distribution, respectively. k is fixed at 0.5 throughout
this work. Note that the log Weibull distribution is derived by the
logarithmic modification of the cumulative distribution of theWeibull
distribution and reduces to the power law distribution as α2 is unity.

For determining which distribution can fit better the interoccur-
rence data, we used the root mean square (rms) and Kolomogorov–
Smirnov (KS) tests as the measure of goodness-of-fit. The definition of
the rms value is

rms =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i=1
ðxi−xi′Þ2

n′−k′

vuuut
; ð6Þ

where xi are actual data and x′i are estimated data obtained from P(τ).
n′ and k′ indicate the numbers of the data points and of the fitting

parameters, respectively. In this study, the rms value is calculated
using the cumulative distribution for decreasing the fluctuation of the
data. The most appropriate distribution is by definition with the
smallest rms value. Also, in order to use the KS test, we define the
maximum deviation of static DKS as

DKS = max
i

jyi−yi′ j ; ð7Þ

where yi and y′i mean the actual data of the cumulative distribution
and the data estimated from the fitting distribution, respectively.
Then, the significance level of probability of the goodness-of-fit, Q, is
defined as

Q = 2 ∑
∞

i=1
ð−1Þi−1e−2i2λ2

; ð8Þ

where

λ = DKS
ffiffiffiffiffi
n′

p
+ 0:12 +

0:11ffiffiffiffiffi
n′

p
� �

: ð9Þ

It is recognized that the preferred distribution show the smallest value
of DKS and the largest value of Q (Press et al., 1995).

3. Results

We here investigate the interoccurrence time statistics by
analyzing the SCEDC and the TCWB data. The results are listed in
Tables 2 and 3 for SCEDC and Tables 4 and 5 for TCWB. As for the
results from the JMA and synthetic data, we refer the readers to the
previous works by Hasumi et al. (2009a,b). Hasumi et al. (2009a,b)
have demonstrated that, in the JMA and synthetic data, the

Table 2
Results of rms value, DKS, and Q, and parameters for different distribution functions in
the case of mc=3.5 for California earthquakes.

Distribution X αi βi rms [×10−3] DKS Q

Pw (i=1) 0.95±0.01 9.46±0.08 7.6 0.026 0.999
Plw (i=2) 2.84±0.10 17.6±0.50 27 0.112 0.125
Ppow (i=3) 1.57±0.05 0.87±0.03 11 0.229 1.89×10−5

Pgam (i=4) 0.99±0.005 9.53±0.09 9.8 0.030 0.999
Pln (i=5) 1.81±0.03 1.05±0.03 24 0.084 0.403

Table 3
Interoccurrence time statistics by analyzing the SCEDC data. ± means the 95% confidence level of fit.

mc Distribution X Weibull distribution Distribution X p rms
[×10−3]

Kolmogorov–Smirnov test

α1 β1 αi βi DKS Q

4.0 Plw (i=2) 0.98±0.02 26.7±0.52 – – 1 23 0.076 0.421
Ppow (i=3) 0.98±0.02 26.7±0.52 – – 1 23 0.076 0.421
Pgam (i=4) 0.98±0.02 26.7±0.52 0.99±0.01 26.7±0.50 0.34±2.58 23 0.076 0.421
Pln (i=5) 0.98±0.02 26.7±0.52 – 1 23 0.076 0.421

3.5 Plw (i=2) 0.95±0.01 9.46±0.08 – – 1 7.6 0.026 0.999
Ppow (i=3) 0.95±0.01 9.46±0.08 – – 1 7.6 0.026 0.999
Pgam (i=4) 0.95±0.01 9.46±0.08 – – 1 7.6 0.026 0.999
Pln (i=5) 0.95±0.01 9.46±0.08 – 1 7.6 0.026 0.999

3.0 Plw (i=2) 1.00±0.02 3.41±0.10 1.52±0.14 3.75±0.38 0.77±0.02 4.1 0.014 1
Ppow (i=3) 0.97±0.02 3.08±0.04 1.82±0.06 0.59±0.06 0.91±0.02 6.8 0.046 0.992
Pgam (i=4) 0.97±0.02 3.08±0.04 0.99±0.004 3.07±0.02 0.09±0.60 9.1 0.056 0.941
Pln (i=5) 0.97±0.02 3.08±0.04 0.71±0.02 1.01±0.04 0.57±0.06 5.4 0.028 0.999

2.5 Plw (i=2) 1.44±0.02 1.45±0.02 1.22±0.04 2.16±0.04 0.58.±0.01 2.3 0.011 1
Ppow (i=3) 1.44±0.06 1.35±0.02 2.36±0.08 0.52±0.02 0.72.±0.02 7.2 0.029 0.999
Pgam (i=4) 1.44±0.06 1.35±0.02 – – 1 17 0.083 0.554
Pln (i=5) – – 0.02±0.06 0.70±0.02 0 6.1 0.043 0.996

2.0 Plw (i=2) 1.83±0.04 0.81±0.01 1.13±0.02 1.47±0.01 0.45±0.01 1.7 0.007 1
Ppow (i=3) 2.36±0.16 0.81±0.01 3.40±0.10 0.48±0.008 0.44±0.04 7.1 0.027 1
Pgam (i=4) 2.36±0.16 0.81±0.01 1.11±0.06 0.72±0.06 0.97±0.10 25 0.121 0.237
Pln (i=5) – – −0.38±0.01 0.42±0.04 0 15 0.078 0.078

Table 4
Results of rms value, DKS, and Q, and parameters for different distribution functions in
the case of mc=4.5 for Taiwanese earthquakes.

Distribution X αi βi rms [×10−3] DKS Q

Pw (i=1) 0.92±0.01 5.44±0.04 5.8 0.019 1
Plw (i=2) 2.28±0.12 9.93±0.21 31 0.129 0.13
Ppow (i=3) 1.67±0.07 0.66±0.12 11 0.200 0.003
Pgam (i=4) 0.99±0.005 5.52±0.07 10 0.040 0.999
Pln (i=5) 1.25±0.04 1.07±0.04 22 0.079 0.690
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interoccurrence time distribution P(τ) for the large magnitude
threshold mc can be best fitted by the Weibull distribution among
all five distributions in Eqs. (1)–(5), which is supported by the rms
test and KS test for the synthetic data (Hasumi et al., 2009a) and by
the rms test, KS test, and Anderson–Darling (AD) test for the JMA data
(Hasumi et al., 2009b). As shown in Tables 2 and 4, for the SCEDC and
TCWB data, the interoccurrence time distribution P(τ) with large mc,
again, can be very well fitted by the Weibull distribution among the
candidates, because the Weibull distribution possesses the smallest
rms and DKS values, and the largest Q value. This result is basically
consistent with the results in Abaimov et al. (2007, 2008). They have
revealed that the interoccurrence time statistics of large events can be
well described by the Weibull distribution by analyzing the Parkfield
and Writewood earthquake data (Abaimov et al., 2008), and the
synthetic catalogue created by the one-dimensional (1D) spring-block
model (Abaimov et al., 2007).

However, as mc is gradually decreased, the goodness-of-fit of the
Weibull distribution becomes worse (see Tables 3 and 5). We thus
propose a conjecture that the interoccurrence time distribution could
be better described by the superposition of the Weibull distribution
and another distribution X, i.e.

PðτÞ = p × Weibull distribution + ð1−pÞ × distribution X; ð10Þ

where p is the percentage of the Weibull distribution in P(τ) and the
candidates of the distribution X are abovementioned the log Weibull
distribution, the power law distribution, the gamma distribution and
the log normal distribution. We furthermore find that in all
investigated mc domains, due to the lowest rms and DKS values, and
the largest Q value (Tables 3 and 5), the logWeibull distribution is the
most appropriate for the distribution X. We hence conclude that P(τ)
can be very well described by using the superposition of the Weibull
and log Weibull distributions:

PðτÞ = p × Weibull distribution + ð1−pÞ × logWeibull distribution:

ð11Þ

Obviously P(τ) is Plw(τ) when p=0 and is Pw(τ) when p=1. Results
shown in Tables 3 and 5 thus bring us a view that the interoccurrence

time statistics contain both the Weibull statistics and the log Weibull
statistics and, asmc is gradually increased, the dominant distribution of
P(τ) then changes from the log Weibull distribution to the Weibull
distribution. That means P(τ) must exhibit the Weibull–log Weibull
transition.

As an example, together with the previous results of the JMA and
synthetic catalogues (Hasumi et al., 2009a,b), we show the cumulative
distributions of interoccurrence times for the log Weibull regime, the
superposition regime and the Weibull regime in Fig. 2(a), (b) and (c),
respectively. To make clear the log Weibull and Weibull regimes, we
demonstrate the logWeibull plot for the logWeibull fit and theWeibull
plot for theWeibull fit in Fig. 2(d) and (e), respectively. Note that those
results of the JMAdata shown in Fig. 2 are obtained fromadivided region
spanning 35°–40°N and 140°–145°E. In addition, the pure log Weibull
regime can only be observed in the synthetic data (Fig. 2a) because the
real catalogues undoubtedly lack for events much smaller than the
magnitude of completenessmc

0. Although we cannot detect the pure log
Weibull regime for the real catalogues, the superposition regime as
shown in Fig. 2(b) nevertheless suggests that the transition from the log
Weibull distribution to the Weibull distribution in the interoccurrence
times could appear universally in different tectonic settings.

The changes in the fitting parameters of theWeibull and logWeibull
distributions, as a function of mc/mmax, are shown in Figs. 3 and 4. We
have introduced the scaledmagnitude, defined asmc/mmax, for unifying
the data presentation of individual catalogues. We demonstrate the
relation between the Weibull parameters (α1, β1) as a function of mc/
mmax in Fig. 3. As shown in Fig. 3(a), α1 gradually decreases asmc/mmax

increases for the case of JMA, SCEDC and TCWB. Additionally, for large
mc/mmax, α1 obtained from the natural data is less than unity, indicating
that the occurrence of natural earthquakes is not a Poissonian process,
whereasα1 for the synthetic data gradually increases and is greater than
unity. However, it should be also noted that α1 derived from the
synthetic data could be less than 1 by tuning the parameters of the
spring-block model (Hasumi et al., 2009a). On the other hand, as mc/
mmax increases, β1 for the synthetic data (Fig. 3b) increases double
exponentiallywhileβ1 for natural data (Fig. 3c) increases exponentially.
We also show in Fig. 4 the logWeibull parameters (α2, β2) as a function
ofmc/mmax. For all catalogues, asmc/mmax increases, α2 (Fig. 4a) and β2

(Fig. 4b) increase linearly and exponentially, respectively.

Table 5
Interoccurrence time statistics by analyzing the TCWB data. ± means the 95% confidence level of fit.

mc Distribution X Weibull distribution Distribution X p rms
[×10−3]

Kolmogorov–Smirnov test

α1 β1 αi βi DKS Q

5.0 Plw (i=2) 0.86±0.02 15.3±0.22 – – 1 12 0.039 0.997
Ppow (i=3) 0.86±0.02 15.3±0.22 – – 1 12 0.039 0.997
Pgam (i=4) 0.86±0.02 15.3±0.22 – – 1 12 0.039 0.997
Pln (i=5) 0.86±0.02 15.3±0.22 – 1 12 0.039 0.997

4.5 Plw (i=2) 0.92±0.01 5.44±0.04 – – 1 5.8 0.019 1
Ppow (i=3) 0.92±0.01 5.44±0.04 – – 1 5.8 0.019 1
Pgam (i=4) 0.92±0.01 5.44±0.04 – – 1 5.8 0.019 1
Pln (i=5) 0.92±0.01 5.44±0.04 – 1 5.8 0.019 1

4.0 Plw (i=2) 1.00±0.04 2.20±0.10 1.84±0.14 4.14±0.34 0.77±0.02 3.5 0.0100 1
Ppow (i=3) 1.09±0.02 2.25±0.04 1.94±0.08 0.53±0.06 0.88±0.02 7.4 0.029 0.999
Pgam (i=4) 1.09±0.02 2.25±0.04 2.04±0.02 0.98±0.04 0.83±0.06 9.4 0.028 0.999
Pln (i=5) 1.09±0.02 2.25±0.04 0.44±0.01 0.91±0.01 0.40±0.06 3.4 0.0102 1

3.5 Plw (i=2) 1.44±0.06 1.28±0.02 1.24±0.10 2.08±0.12 0.64±0.04 5.0 0.010 1
Ppow (i=3) 1.50±0.06 1.24±0.02 2.42±0.10 0.50±0.02 0.73.±0.04 8.4 0.027 1
Pgam (i=4) – – 2.01±0.01 0.56±0.02 0 14 0.085 0.778
Pln (i=5) – – −0.05±0.006 0.66±0.008 0 6.1 0.028 1

3.0 Plw (i=2) 2.08±0.14 0.75±0.02 1.24±0.10 1.49±0.02 0.47±0.04 3.4 0.012 1
Ppow (i=3) 2.63±0.20 0.78±0.01 3.56±0.14 0.48±0.008 0.53±0.04 7.5 0.026 1
Pgam (i=4) 2.63±0.20 0.78±0.01 1.92±0.10 0.37±0.04 0.94±0.12 24 0.101 0.50
Pln (i=5) – – −0.40±0.008 0.38±0.01 0 12 0.051 0.997

2.5 Plw (i=2) 3.35±1.08 0.59±0.06 1.01±0.18 1.18±0.04 0.40±0.12 14 0.032 1
Ppow (i=3) 5.09±0.72 0.61±0.01 6.21±0.22 0.48±0.004 0.39±0.04 14 0.063 0.999
Pgam (i=4) 5.09±0.72 0.61±0.01 1.67±4.84 0.68±0.73 0.96±0.14 43 0.131 0.715
Pln (i=5) – – −0.57±0.01 0.19±0.02 0 32 0.086 0.983
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Most importantly, as clearly shown in Fig. 5, the percentage p of
the Weibull distribution in P(τ) gradually increases as mc/mmax

increases, which demonstrates that as the threshold of magnitude is

varied the probability distribution for P(τ) changes and the dominant
distribution is transferred from the log Weibull distribution to the
Weibull distribution. We thus define two crossover (transition)

Fig. 2. The cumulative distribution of interoccurrence times for different catalogues. (a), (b) and (c) correspond to the log Weibull regime, the superposition regime and theWeibull
regime, respectively. For (b) and (c), the result of the synthetic data is displayed in the inset figures. (d) and (e) are the log Weibull and Weibull plots, respectively.

13T. Hasumi et al. / Tectonophysics 485 (2010) 9–16



Author's personal copy

magnitudes mc⁎/mmax and mc⁎⁎/mmax representing the scaled magni-
tudes of the distribution changed from the pure logWeibull regime to
the superposition regime and from the superposition regime to the
pure Weibull regime, respectively (Fig. 5). As shown in Fig. 5, the
transition from the log Weibull regime to the Weibull regime for the
synthetic data (circles) appears clearly, so that both the first (mc⁎/
mmax) and the second (mc⁎⁎/mmax) crossover magnitudes can be well

estimated. As for the cases of natural catalogues, due to incomplete
events smaller than the magnitude of completeness, the pure log
Weibull regime cannot be observed (Fig. 5) and we can thus

Fig. 3. Change of theWeibull parameters as the function ofmc/mmax. The result of α1, β1

for the synthetic, and for natural data are shown in (a), (b) and (c), respectively.

Fig. 4. Change of the logWeibull parameters as the function ofmc/mmax. The result of α2

and β2 are presented in (a) and (b), respectively.

Fig. 5. Change of the percentage of the Weibull distribution as the function of mc/mmax.
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determine the second crossover point mc⁎⁎/mmax only. It looks like
that the values of mc⁎⁎/mmax are coincidently around 0.60 for all of
four catalogues, indicating its region-independence.

4. Discussion

To study the feature of the Weibull–log Weibull transition, we
summarize our results obtained from 17 different regions (14 regions
in Japan, 2 regions of Southern California and Taiwan, and a virtual
region of the 2D spring-block model) in Fig. 6. We interestingly find
that mc⁎⁎ is proportional to the maximum magnitude (Fig. 6a). We
then obtain a region-independent constant for the scaled crossover
magnitude, namely, mc⁎⁎/mmax=0.54±0.06 (Fig. 6b). Note that, in
Fig. 6(b), there are three outliers with the values of mc⁎⁎/mmax less
than 0.5, corresponding to those regions of (30°–35°N and 125°–
130°E), (45°–50°N and 140°–145°E) and (40°–45°N and 140°–145°E)
in Japan. The numbers of earthquakes used in the first two regions are
in the order of 102 and are much smaller than the earthquake
numbers used in other regions. Therefore, the small values of mc⁎⁎/
mmax are probably caused by insufficient statistical samplings. As for
the region of (40°–45°N and 140°–145°E), mmax is 8.0 which is the
largest magnitude throughout the JMA catalogue we analyzed.
Therefore mc⁎⁎/mmax for this region tends to be downward biased.

Further investigation shows that, although the scaled crossover
magnitudes mc⁎⁎/mmax is region-independent, the crossover magni-

tude mc⁎⁎ from the superposition regime to the pure Weibull regime
probably depends on the tectonic region (Table 6). Comparing the
plate velocity with averaged mc⁎⁎ sheds light on the geophysical
implication of the region-dependentmc⁎⁎. As shown in Table 6,mc⁎⁎ is
on the average proportional to the plate velocity. That means the
maximum magnitude mmax for a tectonic region is more or less
proportional to the plate velocity since mc⁎⁎/0.54=mmax. Such an
interesting consequence is reminiscent of the early study by Ruff and
Kanamori (1980). Ruff and Kanamori (1980) showed a relation
indicating that themagnitude of characteristic earthquake occurred in
the subduction-zone is directly proportional to the convergence rate.
The relationmc⁎⁎/0.54=mmax we find in the present study can thus be
explained on the basis of their early observation about the velocity-
dependence of the characteristic earthquake magnitude.

The physical interpretation of the Weibull–log Weibull transition
remains open. However, it might suggest that the occurrence
mechanism of earthquake could probably depend on its magnitude
then, inevitably, the probability distribution of the interoccurrence
time statistics changes as the threshold of magnitudemc is varied. It is
well known that theWeibull distribution for life-time of materials can
be derived in the framework of damage mechanics (Weibull, 1951;
Ghosh, 1999; Turcotte et al., 2003; Wong et al., 2006; Abaimov et al.,
2007). Our present results thus suggest that larger earthquakes might
be caused by the damage mechanism driven by the plate motion,
whereas the effect of the plate-driven damaging process might
become minor for smaller earthquakes. Hence, the transition of the
Weibull regime to the log Weibull regime could be interpreted from
the geophysical sense as the decrement of the plate-driven damaging
mechanics.

5. Concluding remarks

We have investigated the interoccurrence time statistics of natural
and synthetic earthquakes by analyzing the JMA, SCEDC, TCWB and
synthetic catalogues. We emphasize the interoccurrence time statis-
tics contain both the Weibull and log Weibull distributions. And, in
this paper, we demonstrate the universal Weibull–log Weibull
transition in the interoccurrence time distributions for different
tectonic settings. Our present work represents the first step to fully
understand the interoccurrence time statistics and the Weibull–log
Weibull transition for real earthquakes. In this study, we also propose
the region-independent scaling relation, namely, mc⁎⁎/mmax=0.54±
0.06. We find the crossover magnitude mc⁎⁎ is proportional to the
plate velocity, which is consistent with an earlier observation about
the velocity-dependence of the characteristic earthquake magnitude
(Ruff and Kanamori, 1980). Although the origins of both the log
Weibull distribution and the Weibull–log Weibull transition remain
open, we suggest the change in the distribution from the log Weibull
distribution to the Weibull distribution can be considered as the
enhancement in the plate-driven damaging mechanics.

Fig. 6. Relation between mc
⁎⁎ and mmax. In (a), mc

⁎⁎ is proportional to the mmax. In
(b), we obtain a region-independent constant for the scaled crossover magnitude mc

⁎⁎/
mmax=0.54±0.06.

Table 6
List of the crossover magnitude and the plate velocity (Fowler, 1990; Seno et al., 1993).
The notation of PH, EU, PA, and NA represent PHilippine Sea plate, EUrasian plate,
PAcific plate, and North American plate, respectively.

Region Relative plate motion Velocity [mm/yr] mc
⁎⁎

Taiwan PH–EU 71 4.40
East Japan PA–PH 49 3.80a

West Japan PH–EU 47 3.80b

California PA–NA 47 3.40

a We take an average using three regions; 25°–30°N and 140°–145°E (mc
⁎⁎=3.7),

30°–35°N and 140°–145°E (mc
⁎⁎=3.7), and 35°–40°N and 140°–145°E (mc

⁎⁎=4.0).
b We take an average using five regions; 25°–30°N and 125°–130°E (mc

⁎⁎=3.7), 25°–
30°N and 130°–135°E (mc

⁎⁎=3.3), 30°–35°N and 130°–135°E (mc
⁎⁎=4.3), 30°–35°N

and 135°–140°E (mc
⁎⁎=4.1), and 35°–40°N and 135°–140°E (mc

⁎⁎=3.6).
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