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Abstract Assessing the completeness magnitude Mc of earthquake catalogs is an
essential prerequisite for any seismicity analysis. We employ a simple model to com-
puteMc in space based on the proximity to seismic stations in a network.We show that a
relationship of the form Mpred

c �d� � adb � c, with d the distance to the kth nearest
seismic station, fits the observations well, k depending on the minimum number of
stations being required to trigger an event declaration in a catalog. We then propose
a newMc mapping approach, the Bayesian magnitude of completeness (BMC) method,
based on a two-step procedure: (1) a spatial resolution optimization to minimize spatial
heterogeneities and uncertainties in Mc estimates and (2) a Bayesian approach that
merges prior information about Mc based on the proximity to seismic stations with
locally observed values weighted by their respective uncertainties. Contrary to the cur-
rentMc mapping procedures, the radius that defines which earthquakes to include in the
local magnitude distribution is chosen according to an objective criterion, and there are
no gaps in the spatial estimation of Mc. The method solely requires the coordinates
of seismic stations. Here, we investigate the Taiwan Central Weather Bureau (CWB)
seismic network and earthquake catalog over the period 1994–2010.

Introduction

Knowledge of the completeness of earthquake catalogs
is crucial for virtually any seismicity analysis (Habermann,
1987). The completeness magnitude, orMc, is defined as the
lowest magnitude at which all earthquakes in a space-time
volume are reliably detected (e.g., Rydelek and Sacks, 1989;
Woessner and Wiemer, 2005). Studies such as the analysis of
rate changes, static and dynamic triggering, mapping of seis-
micity parameters, earthquake forecasting, and probabilistic
seismic hazard assessment commonly require knowledge of
the overall Mc of an earthquake catalog.

If the magnitudes of a set of earthquakes obey the
Gutenberg–Richter law (Gutenberg and Richter, 1944), Mc

can also be defined as the minimum magnitude at which the
(complementary) cumulative frequency magnitude distribu-
tion (FMD) departs from the exponential decay (e.g.,
Zuniga and Wyss, 1995). Most existing techniques to esti-
mate Mc follow this second definition, which assumes the
validity of the Gutenberg–Richter law, in other words, the
self-similarity of earthquakes (e.g., Wiemer and Katsumata,
1999; Wiemer and Wyss, 2000; Cao and Gao, 2002; Marsan,
2003; Kagan, 2002, 2003; Woessner and Wiemer, 2005;
Amorèse, 2007; Iwata, 2008). Some notable exceptions are
the techniques by Rydelek and Sacks (1989), who estimate
Mc by comparing the day-to-night ratio of events per mag-

nitude increment; and those by Schorlemmer and Woessner
(2008), who determine earthquake detection probabilities
directly from seismic stations recordings and by using noise
spectra of seismic stations (e.g., Gomberg, 1991; Kvaerna
and Ringdal, 1999; Kvaerna et al., 2002a,b).

Most studies that focus on seismicity features in
relatively large regions, for instance, regional earthquake fore-
casts (e.g., Helmstetter et al., 2007; Wiemer and Schorlem-
mer, 2007; Werner, Helmstetter, et al., 2011) need to also
consider the spatial, and possibly the temporal, variations
ofMc. AnMc mapping procedurewas proposed byWyss et al.
(1999) and discussed in more detail by Wiemer and Wyss
(2000). Studies can use such an Mc�x; y; z; t� archive either
by directly incorporating the knowledge of Mc at each
space-time node in the computation of the seismicity param-
eter of interest (e.g., Wiemer and Schorlemmer, 2007) or, if
one decides to use a single overall Mc cutoff for the whole
region of interest, by defining Mc as the highest observed
value in space and time. The latter approach considerably
decreases the number of available data; however, the
max�Mc�t; x; y; z�� approach results in a more accurate value
than the bulk value computed from the full data set, especially
for areas at the border or outside the seismic network.

As techniques in statistical seismology are becoming
more refined, there is an increasing need for robust spatial
mapping ofMc. Existing methods, however, are problematic,*Now at Department of Geosciences, Princeton University.
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as pointed out already by Rydelek and Sacks (2003) (but see
also Wiemer and Wyss [2003]). The Wiemer and Wyss
(2000) approach and its variants (e.g., Woessner and Wie-
mer, 2005; Hutton et al., 2010) all have two basic limitations:

• L1: an ad hoc definition of the spatial resolution of Mc;
• L2: gaps in regions of low seismicity where Mc cannot be
computed with confidence.

It is these shortcomings that we address in this study.
An existing solution proposed to overcome these limita-

tions is the Probability-based magnitude of completeness
(PMC) method (Schorlemmer and Woessner, 2008; Nanjo,
Schorlemmer, et al., 2010; Schorlemmer et al., 2010). PMC
uses the phase data, station information, and network-specific
attenuation relations to estimate earthquake detection prob-
abilities and does not assume the power-law behavior of seis-
micity. However, the PMC approach has several drawbacks.
First, it is time consuming, requiring a dedicated study and
weeks to months of data processing. Second, PMC estimates
are not sensitive to temporal changes in Mc, such as during
aftershock sequences (J. Woessner, personal comm., 2010).
Third, the PMC estimates are sometimes incompatible with
Gutenberg–Richter-based estimates (Schorlemmer and
Woessner, 2008; Nanjo, Schorlemmer, et al., 2010). Finally,
the data necessary for the PMC method are not always avail-
able (Hutton et al., 2010).

In the present work, we propose a spatial statistical
model of Mc based on the observed relation between Mc

and station density, which requires much less information
than the PMC method, but which nevertheless solves the
aforementioned problems L1 and L2 of Mc maps. Because,
a priori, the spatial variations ofMc depend to the first order
on the local density of seismic stations, we model and esti-
mate the empirical relationship Mpred

c � f�d� between Mc

and the distance d to the kth nearest station, where Mpred
c

is the magnitude of completeness predicted by the model.
We first modify the current Mc mapping methodology by
estimating the optimal spatial resolution of Mc. We then
use a Bayesian method (e.g., Wikle and Berliner, 2007; Wer-
ner, Ide, and Sornette, 2011) to combine local Mc observa-
tions and their uncertainty with the prior model information,
or the predictive relation Mpred

c � f�d�.

Earthquake Catalog

We use data from the Central Weather Bureau Seismic
Network (CWBSN), which is responsible for monitoring
earthquakes in the region of Taiwan. It consists of a central
recording system currently with 71 telemetered stations that
are equipped with three-component Teledyne/Geotech S13
seismometers. The CWBSN instruments were operating in
a triggered-recording mode prior to 1994, when continuous
recording began. The network is equipped with a system of
automatic earthquake detection followed by manual verifica-
tion. We refer the reader to Shin and Teng (2001) and Wu,
Chang, et al. (2008) for more details about the CWBSN.

We selected earthquakes in the CWB earthquake catalog
from 1 January 1994 to 31 March 2010 (Fig. 1) with focal
depths less than 35 km, which is comparable to the thickness
of the seismogenic zone in Taiwan (Wang et al., 1994).

The region of Taiwan is highly appropriate for the pur-
pose of this study for the following reasons: (1) high-quality
data with an average Mc of 2.0 (e.g., Wu and Chen, 2007),
(2) no major change in the network over a period of 16 yr,
(3) evenly distributed seismic stations, and (4) many earth-
quakes (Taiwan is one of the most seismically active regions
in the world, with about 18,000 events recorded each year
since 1994 in an approximately 400 km × 550 km region
[Wu, Chang, et al., 2008]).

Magnitude uncertainties can lead to deviations from the
Gutenberg–Richter law, which may have an impact on Mc

estimates. Uncertainties such as systematic errors or random
errors can significantly impact the results (Tinti and Mular-
gia, 1985) because they can lead to magnitude stretches or
shifts in the FMD (Habermann, 1987; Zuniga and Wyss,
1995; Zuniga and Wiemer, 1999). Wu et al. (2005) showed
that the local magnitude ML used in the CWB did not corre-
late well with the moment magnitude scale and therefore
proposed a corrected relationship, MLnew

. Using this new
relationship would lead to a downward shift in all magnitude
estimates. However, we used the original magnitudes of the

Figure 1. Map of the region of Taiwan with earthquakes listed
in the CWB catalog from 1994 to 2010. Seismic stations are repre-
sented by triangles.
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earthquake catalog because we did not want to add further
uncertainties resulting from the conversion to moment mag-
nitudes (see, e.g., Castellaro et al., 2006). Werner and Sorn-
ette (2008) discussed and estimated intramagnitude and
intermagnitude uncertainties and showed that the distribu-
tions of errors have tails that are fatter than Gaussian. While
Tinti and Mulargia (1985) observed an upward shift in the
Gutenberg–Richter power-law part of the FMD after adding
a Gaussian noise to magnitude estimates, we assume in the
present work that such errors are systematic and therefore
have no role in the spatial variability ofMc. This assumption
should, however, be verified in further studies.

Methods for Estimating and Mapping Mc

Nonparametric Techniques to Compute Mc

While a number of techniques exist to compute Mc (see
the review by Woessner and Wiemer [2005]), in the present
work, we use the nonparametric maximum curvature (MAXC)
method (Wyss et al., 1999; Wiemer andWyss, 2000) because
it is robust and simple. However, the Bayesian approach
and the a priorimodel we discuss in the following paragraphs
can be used with any method.

TheMAXC technique is a fast and straightforward way to
estimateMc and consists of finding themagnitude binwith the
highest frequency of events in the frequency-magnitude plot.
The technique has been shown to underestimateMc in the case
of gradually curved FMDs, which we believe arise from
spatiotemporal heterogeneities of the network (Wiemer and
Wyss, 2000; Woessner and Wiemer, 2005).

For comparison, we use another nonparametric tech-
nique, the median-based analysis of the segment slope

(MBASS) method (Amorèse, 2007). The MBASS technique
is based on an iterativemethod that searches for slope changes
in the noncumulative FMD; the acceptance or rejection of the
null hypothesis (no change in slope) is based on theWilcoxon
rank-sum test. Amorèse (2007) shows that the main disconti-
nuity (where the probability of a change in slope is largest)
matches the completeness magnitude Mc estimated by the
parametric entire magnitude range (EMR) technique (Woess-
ner and Wiemer, 2005; Hutton et al., 2010; Nanjo, Ishibe,
et al., 2010). Because the EMR technique has four free param-
eters and makes an additional assumption about the incom-
plete part of the FMD, we do not consider it here.

Figure 2 shows the FMD of the Taiwan CWB catalog
as well as the Gutenberg–Richter law fit from magnitudes
greater than Mc. We compute Mc by using a Monte Carlo
approximation of the bootstrap method (i.e., resampling with
replacement; Efron, 1979), as already used in other Mc stu-
dies (Woessner and Wiemer, 2005; Amorèse, 2007), and we
useNs � 200 bootstrap samples as recommended byWoess-
ner and Wiemer (2005). In this study, we define Mc as the
arithmetic mean of Mc values obtained from bootstrapping
and σ0 as its standard error. We compute the b value of
the Gutenberg–Richter law by using the maximum-likeli-
hood technique (Aki, 1965) and determine its confidence in-
terval from theMc standard error σ0 and the b-value standard
error (Shi and Bolt, 1982). If we assume self-similarity,
then the MAXC technique underestimates Mc with
Mbulk

c �MAXC� � 1:98 (σ0 � 0:04) resulting in b � 0:78,
while the MBASS technique gives an estimate of
Mbulk

c �MBASS� � 2:37 (σ0 � 0:07), resulting in b � 0:88.
Mbulk

c corresponds to the magnitude of completeness com-
puted from the bulk FMD, in other words, the FMD of the
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Figure 2. FMD of earthquakes in the Taiwan CWB earthquake catalog during the period 1 January 1994–31 March 2010. The b value, or
slope of the Gutenberg–Richter law, is computed for magnitudes greater than Mc (dotted vertical line) by using the maximum-likelihood
technique. (a)Mc estimated using the maximum curvature (MAXC) method:Mbulk

c �MAXC� 1.98 with standard error σ0 � 0:04, resulting in
b � 0:78. (b) Mc estimated with the median-based analysis of the segment slope (MBASS): Mbulk

c �MBASS� 2.37 with standard error
σ0 � 0:07, resulting in b � 0:88.
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entire earthquake catalog. Visual inspection of Figure 2
confirms that the MAXC bulk estimate is too low; MAXC
(by definition) is not sensitive to gradual changes in Mc,
as suggested by Woessner and Wiemer (2005).

Characteristics of the Current Mc Mapping Approach

The method to map Mc proposed by Wyss et al. (1999)
was defined as follows: At each grid node, Mc is calculated
from the N closest events to that point, with N fixed. In their
study, the authors used the MAXC technique to compute Mc,
while Wiemer and Wyss (2000) used the goodness-of-fit test
(GFT), a technique that compares the observed FMD with
synthetic distributions. Rydelek and Sacks (2003) argued
that using a fixed number of events to determine Mc is pro-
blematic because the resulting values on the map have an
unrealistic and variable relationship to the actual seismicity.
This is especially true in areas of high-seismicity density gra-
dients, which is the case in most regional studies with active

zones bordered by aseismic ones. Wiemer and Wyss (2000)
fixed a maximum radius to limit these discrepancies. Wiemer
and Wyss (2003) also explained that the constant number
approach has the benefit that the uncertainty in Mc, which
scales with the sample size, is less variable across a map.
However, they argued that a constant number mapping
should be compared to a constant radius mapping to verify
that the results are not significantly affected by this choice.
Hutton et al. (2010) discuss the observed differences be-
tween the two approaches in detail for southern California.

The use of a constant radius also introduces problems,
which we illustrate by comparing Mc maps computed for
Taiwan over the period 1994–2010 for different radii,
r � �5; 10; 20; 50; 75� km (Fig. 3). The minimum (or fixed)
number of events required at each node depends on the desired
robustness of theMc estimate. Woessner and Wiemer (2005)
studied the dependence ofMc on sample size and verified that
the uncertainty decreases with an increasing number of events
for most techniques (e.g., MAXC, GFT, and EMR techniques).

Figure 3. Impact of the radius r on the completeness magnitude Mc in the fixed-radius approach: Mc�MAXC� estimates, Mc�MBASS�
estimates, and the difference Mc�MBASS� �Mc�MAXC� are shown in the map view. Mc is computed on a 0:05° × 0:05° grid, using
cylinders of radius r � �5; 10; 20; 50; 75� km and a minimum number of Nmin � 100 events. Contours represent Mc 2.0 and Mc 2.4.

1374 A. Mignan, M. J. Werner, S. Wiemer, C.-C. Chen, and Y.-M. Wu



Because uncertainty estimates are not used in the current Mc

mapping methodology, an educated guess must be made to
decide which minimum (or fixed) number of events seems
the most reasonable. For the purposes of this section, we
fix theminimumnumber of earthquakes toNmin � 100.Wyss
et al. (1999) use the MAXC technique with a fixed number
Nfix � 400 of events. Wiemer and Wyss (2000) use the
GFT method with Nfix � 250 events. Woessner and Wiemer
(2005) and Schorlemmer and Woessner (2008) use the EMR
technique with Nmin � 60 and 100 events, respectively.
Finally, Hutton et al. (2010) use the EMR technique with
Nmin � 100 events andNfix � 200 or 500 events, and Nanjo,
Ishibe, et al. (2010) with Nfix � 200 events. To avoid gaps in
regions of low seismicity, a lower number of events Nmin is
sometimes tolerated (Woessner and Wiemer, 2005), or a high
Mc value is fixed ad hoc in regions of little or no data (Wiemer
and Schorlemmer, 2007; Hutton et al., 2010).

We observe in Figure 3 that local Mc�MAXC� and
Mc�MBASS� values are relatively similar up to r � 20 km,
but they diverge for larger radii, the discrepancy being max-
imal for r tending to infinity, in other words, when the com-
pleteness magnitude is computed from the FMD of the full
earthquake catalog. In that case, the difference in the twoMc

estimates is ΔMbulk
cMc

� 0:4 (Fig. 2). This suggests that the
MAXC technique does not underestimate Mc compared to
MBASS results when estimated in regions of homogeneous
recording ability of the network. Because the first step of the
approach presented in this paper is to minimize the spatial
heterogeneities of the network, for the rest of this study,
we propose to only use the MAXC technique to estimate Mc.

The fundamental challenge in defining an improved Mc

mapping approach that overcomes the shortcomings of the
constant N or r approaches is to increase the number of
events available to estimate Mc while including only those
events from the homogeneous regions of the network in
which the same detection threshold is valid. The spatial re-
solution of Mc estimates should reflect the spatial heteroge-
neities of the recording network; if neighboring regions are
characterized by the same detection capability, then all earth-
quakes in the joint region should be used to estimate the
completeness threshold to reduce uncertainties. This consid-
eration is neglected by the current approach that employs a
fixed radius or a fixed number of earthquakes to estimateMc.
When the radius r increases (i.e., when the spatial resolution
is reduced), the number of gaps decreases, but differences be-
tween MAXCMc and MBASSMc estimates increase (Fig. 3).
These discrepancies are not incorporated in uncertainty es-
timates (σ0), because the latter are reduced when the radius
and thus, the sample size, increase.

While the current mapping techniques can lead to rea-
sonable estimates of Mc, users should be aware of the pos-
sible bias due to heterogeneities of the network. One possible
test is to compare results obtained by MAXC and MBASS for
different fixed radii, as shown in Figure 3, and verify that the
results do not differ significantly. The educated guess on the
fixed radius could hence be improved.

Mc Spatial Resolution Optimization Procedure

High-Resolution Mc Map

To estimate Mc in regions of the same or similar detec-
tion probabilities and to thereby reduce possible errors in
local Mc and σ0 estimates, we compute a high-resolution
map of Mc values in small, nonoverlapping cells (here on a
0:05° × 0:05° grid) so that the Mc value only depends on the
events located within each cell (Fig. 4a), resulting in an Mc

map based on disjoint, independent data. (In the Spatial
Model of Mc section, we verify that the cell size we chose
for Taiwan is smaller than the minimum expected spatial
heterogeneity in Mc for the CWBSN). We fix the minimum
number of events to Nmin � 4, which is the lowest possible
value to get a bounded maximum in the noncumulative FMD
curve. Figure 4b shows the corresponding σ0 map.

Woessner andWiemer (2005) suggested that a minimum
number of Nmin � 200 events were desirable to get reliable
estimates of Mc; further statistics should be used to test the
significance of the results if fewer events are used in the
estimation. Figure 4c shows a scatter plot of the standard
error σ0 versus the number of events n in each independent
cell. On average, a larger sample size n decreases the uncer-
tainty of the Mc estimate. One might naively think that the
only relevant characteristic of each sample needed to reduce
the uncertainty of Mc is the sample size and that, therefore,
the small standard errors for small sample size might be un-
realistically small. In particular, one might question that an
Mc estimate with σ0�n � 4� � 0:05 obtained from four
events is actually as reliable as an Mc estimate with σ0�n �
5; 000� � 0:05 obtained from 5000 earthquakes. However,
as we show in the Appendix, bootstrapping indeed seems
to give reliable uncertainty estimates of Mc for Nmin ≥ 4,
at least under the assumption of both a particular but reason-
able FMD and the MAXC definition of Mc. This can be illu-
strated by looking at the frequency-magnitude plot of
Figure 2a (represented by the gray triangles). For any random
sample of size n from the full catalog of size Nmax, each
earthquake has an equal probability of selection n=Nmax.
Thus, the number of occurrences for each magnitude bin
is equally reduced at plus or less one event (discrete data),
and the magnitude bin with the highest frequency of events
(i.e.,Mc in the MAXC definition) is likely to remain the same
for any n (see simulation results in the Appendix).

Therefore, the large variability of the estimated uncer-
tainty σ0 for small sample sizes seems real and reflects the
extent to which the particular magnitudes of a sample can
constrain Mc; in other words, different samples of the same
size are not equally informative in constraining Mc when
bootstrapped. Therefore, using a generic relationship for
the standard error in terms of the sample size, such as
σ0�n� ∼ 1=

���
n

p
, would lead to an unnecessary loss of infor-

mation; the standard error determined from bootstrapping
reveals more information and is a better estimator of the
uncertainty.
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Relationship between Mc and Distance
to Seismic Stations

We now determine a simple model that predicts an
expected Mc based on the density of stations. This model
can supplement the estimated Mc values specifically in re-
gions of large uncertainties. Wiemer and Wyss (2000) docu-
mented an increase of the completeness magnitude with
distance to the fourth nearest station, based on data from
California and Alaska. Nanjo, Ishibe, et al. (2010) observe
a similar feature for Japan. The authors used the distance
to the fourth nearest station because it corresponds to themini-
mum number of stations to be triggered for initiating the loca-
tion procedure in the Japan Meteorological Agency seismic
network. Event location in the Taiwan CWBSN requires at
least three stations and at least five phases, P or S. Therefore,
an event is declared only when three or more stations detect it.
Note that more stations can be used to decrease location
uncertainty and that the kth nearest station is not always
the kth-triggered station (Nanjo, Ishibe, et al., 2010). For
Taiwan, it seems equally reasonable to use the distance to the
third-, fourth-, or fifth nearest station. All the results and
figures presented through this paper are based on a distance
to the fifth station. Results for a distance to the third or fourth
station are only discussed when necessary. Figure 5a shows
that Mc increases with the distance to the fifth station in the
CWBSN of Taiwan, in agreement with observations in other
regions (Wiemer andWyss, 2000; Nanjo, Ishibe, et al., 2010).

The dominant frequency of the recorded seismogram,
and the frequency of the maximum amplitude peak at which
ML is measured, is dependent on the magnitude. Smaller
events will have a higher dominant frequency, and because
higher frequencies attenuate faster, the Mc�d� curves shown
in Figure 5 are inherently also frequency dependent.
Attenuation of seismic waves with distance and scaling with
magnitude is, of course, amuch-studied subject, as it is used in
ground motion prediction equations (GMPEs) and in numer-
ical simulations of wave propagation. However, GMPEs tend
to be constrained for larger magnitudes only. Our interest here
is to find a simple model based only on the Mc�d� observa-
tions because, in this way,we use the observed values as input,
averaging over all the complexities of the attenuation (fre-
quency dependence, 3D structure, site amplification, basin
effects, etc.).

We determine the relationshipMpred
c � f�d� from a non-

linear least-squares regression with d, the distance to the fifth
nearest station. For the functional form of f, we choose
adb � c with 0 < b < 1, which represents to the first order
the just-mentioned geometric dispersion and attenuation of
the amplitude of seismic waves with distance from the seis-
mic source. In Figure 5, we show the fit of this functional
form to the observations.

Optimized Mc Map

The relationship Mpred
c � f�d� shown in Figure 5a indi-

cates thatMc varies more rapidly with distance in the areas of

Figure 4. (a) High-resolution Mc map of the Taiwan CWB
earthquake catalog for the period 1994–2010. Mc is computed
on a 0:05° × 0:05° grid, using all events in the corresponding cells
and a minimum number of Nmin � 4 events. (b) Corresponding
standard error σ0 map. (c) σ0 versus n, the number of events in each
cell. σ0 tends to decrease with increasing n, but the large variability
of σ0 for small samples reflects the fact that different samples pro-
vide varying (but accurate) constraints on Mc when bootstrapped
(see the Appendix).
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better completeness, the dense inner part of the seismic
network, when compared with the sparse outer regions. To
quantify this, we can define a variable spatial resolution
Δd � g�d� of the completeness magnitude:

Δd �
�
adb � σ

a

�
1=b

�
�
adb � σ

a

�
1=b

; (1)

with a and b defined by Mpred
c � f�d� and the standard

deviation σ from the residual Mpred
c �Mobs

c . The parameter

Δd�d� measures a distance over which the completeness
magnitude varies by less than two standard deviations and,
therefore, cannot be resolved.

Based on this estimate of the spatial resolution of the
completeness magnitude, we then locally reestimate Mc

by using the events within a cylinder centered on each grid
cell with a radius r � Δd=2. If Δd is smaller than the diag-
onal of the 0:05° × 0:05° cell, we use all events in that cell.
This new variable (but optimized) radius approach is differ-
ent from the variable radius/constant number approach of
Wiemer and Wyss (2000), in which the size of the cylinder
depends on the density of earthquakes. In our approach, the
size of the cylinder is an estimate of the possible resolution of
the completeness magnitude in space.

From the refined Mc estimates at each grid node, we
then reestimate the parameters of the function f and re-
iterate i times until the difference fi�1�d� � fi�d� becomes
insignificant. The spatial model estimated from the high-
resolution Mc map is only constrained for d < 160 km
(Fig. 5a). Once a new Mc map is computed, the model
can be reestimated from a larger range of d. We stop after
the third iteration (Fig. 5b), when the root mean square error
of fi�1�d� � fi�d� is less than 0.2 for all d, and obtain an
optimized Mc map. fi�1�d� becomes indistinguishable from
fi�d� after the third iteration. The smallest distance we find is
dmin � 15 km, which corresponds to the smallest distance of
any earthquake to its fifth nearest station in the Taiwan
CWBSN. To constrain the model over smaller values of d,
we would need a denser seismic network.

Figure 6a,b shows the optimizedMc andσ0maps, respec-
tively. Compared to the high-resolution maps of Figure 4, the
area over which we could obtain Mc estimates is greatly ex-
panded, and the uncertainties σ0 are reduced because the num-
ber of events used to compute the localMc ismaximizedwhile
possible errors due to spatial heterogeneities are minimized.

Bayesian Approach

Spatial Model of Mc

We can use the empirical relationshipMpred
c � f�d� as a

simple predictive spatial model of the completeness magni-
tude. After the third iteration of the optimization, we find

Mpred
c �d� � 9:42d0:0598 � 9:60; σ � 0:18; (2)

where d is the distance to the fifth nearest station. The resi-
dual of the spatial model Mpred

c �Mobs
c can be fitted by a

normal distribution with mean 0.00 and standard deviation
σ � 0:18 (Fig. 5b). Note that we find Mpred

c �d; k � 4� �
5:96d0:0803 � 5:80, σ � 0:18 and Mpred

c �d; k � 3� �
4:81d0:0883 � 4:36, σ � 0:19 for d, the distance to the kth
nearest station. By using the parameters of equation (2) in
equation (1), we can verify that Mc spatial variations may
be resolved down to Δd≈ 8 km for Taiwan (computed
using dmin � 15 km), which is larger than the grid resolution
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Figure 5. (a) Completeness magnitude Mc as a function of
distance d to the fifth nearest seismic station, based on the high-
resolution Mc map (Fig. 4a). Boxes represent the range from the
first to the third quartiles of all Mc estimates at a given distance.
The relationship Mpred

c � f�d� is indicated by the solid curve.
Modified relationships based on the optimization procedure are
shown for comparison. (b) Mc versus d, based on the third round
of optimization. The relationship Mpred

c � f�d� is indicated by the
solid curve (which is equal to the dotted curve in Fig. 5a). The Mc
residual distribution Mpred

c �Mobs
c is fitted by a normal distribution

with mean 0.00 and standard deviation σ � 0:18.
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Figure 6. Bayesian estimation of the completeness magnitude of the Taiwan CWB catalog for the period 1994–2010. (a) ObservedMobs
c

map obtained from locally optimized radii. (b) Respective uncertainty map σ0. (c) M
pred
c map predicted from prior knowledge of the com-

pleteness magnitude based on the proximity to seismic stations (represented by triangles). (d) Respective standard deviation map σ. (e) BMC
map, or posterior completeness magnitude Mpost

c , after optimally merging observed and predicted values, weighted by their uncertainties.
(f) Respective standard deviation map σpost. Contours represent Mc 2.0 and Mc 2.4.
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of 0:05° × 0:05° (∼5 km). In the outer regions of the net-
work, Δd≈ 100 km. Figure 6c,d shows the predicted
Mc and σ maps derived from equation (2) using the spatial
distribution of stations in the Taiwan CWBSN.

Bayes’ Theorem

In a Bayesian approach, the observed empirical relation-
ship between the completeness magnitude and the proximity
to the seismic stations can be used as a priori information,
or as a forecast model, described by the prior probability
distribution p�Mc�. Local completeness estimates based
on observed magnitudes can be expressed by the conditional
data likelihood p�Mobs

c jMc�, which accounts for observa-
tional uncertainties in the local completeness estimate.
The best estimate of the completeness, which employs both
the prior information and the local observation, each
weighted by their uncertainty, is given by the posterior dis-
tribution in Bayes’ theorem

p�McjMobs
c � � p�Mobs

c jMc�p�Mc�
p�Mobs

c � ; (3)

where p�Mobs
c � is the marginal distribution, which can be

thought of as a normalizing constant (e.g., Wikle and Berli-
ner, 2007; Werner, Ide, and Sornette, 2011).

How should we parameterize these distributions? As we
showed in the previous paragraphs (and in Figure 5b), the
residual between the predicted and the observed complete-
ness magnitude Mpred

c �Mobs
c is well approximated by a

Gaussian distribution. We therefore define the prior probabil-
ity distribution as

p�Mc� �
1������
2π

p
σ
exp

��Mc �Mpred
c �2

2σ2
; (4)

where Mpred
c � adb � c with a � 9:42, b � 0:0598, c �

�9:60 (equation 2), and σ � 0:18 (Fig. 5b). We also assume
the conditional data likelihood to be Gaussian (see the Ap-
pendix for the validation of this assumption):

p�Mobs
c jMc� �

1������
2π

p
σ0

exp
��Mobs

c �Mc�2
2σ2

0

; (5)

where Mobs
c is the locally observed value based on the opti-

mal local radius (obtained from the spatial resolution optimi-
zation procedure) and σ0 is the local standard error computed
from bootstrapping.

With the prior and data likelihood defined as in equa-
tions (4) and (5), the posterior in equation (3) simply becomes
the product of two Gaussian distributions, and we can thus
write the average completenessmagnitudeMpost

c of the poster-
ior as

Mpost
c � Mpred

c σ2
0 �Mobs

c σ2

σ2 � σ2
0

; (6)

which is the average of the predicted and observed complete-
ness magnitude, weighted according to their respective uncer-
tainties. The posterior standard deviation σpost is given by

σpost �
�����������������
σ2σ2

0

σ2 � σ2
0

s
: (7)

Figure 6e,f shows the posteriorMc and σ0 maps, respec-
tively. Note that we henceforth refer to the posteriorMc maps
as Bayesian magnitude of completeness (BMC) maps. From
equation (6), we see that Mpost

c equals Mpred
c in cells without

data, where the uncertainty of the observed value would be
infinite. For other cells, the higher the uncertainty of Mobs

c

estimates, the higher the weight of Mpred
c . Uncertainties are

again substantially decreased because of the fusion of Mc

estimates with the prior information. It is worth noting that
themain features observed in theBMCmap shown inFigure 6e
are similar to the ones observed with the standard mapping
approach (except for the gaps) when a reasonable fixed radius
is chosen (Fig. 3). These main features are illustrated here by
theMc � 2:0 andMc � 2:4 contours. Moreover, we verified
that BMC maps obtained using the distance to the third of
fourth nearest station are almost undistinguishable to the map
obtained with a distance to the fifth nearest station.

Discussion

Statistical seismology as well as probabilistic seismic
hazard assessment relies on robust and readily available
models of the completeness of reporting of earthquake cat-
alogs. We introduce a novel approach, the BMC method, to
mapMc in space. BMC overcomes some of the limitations of
previous mapping approaches. The most substantial innova-
tion of BMC is that we exploit Bayes’ theorem to combine in
an optimal way the observedMc at each node with a generic
Mc model (Fig. 6). Combining the observedMc with a model
helps specifically in regions of low seismicity rate and low
station density, whereMc can only be determined with a high
uncertainty. Different from previous Gutenberg–Richter–
based approaches (e.g., Woessner and Wiemer, 2005), the
final BMC maps thus cover the entire study region, and the
uncertainty at each node is minimized. The BMC maps are
thus more versatile and robust than previously available
Gutenberg–Richter–based approaches. At the same time,
the approach is relatively lightweight: A rough BMC study
can be performed for any given region within a few hours
and only requires an available catalog and the spatial distri-
bution of stations. The PMC method, on the other hand
(Schorlemmer and Woessner, 2008; Nanjo, Schorlemmer,
et al., 2010), requires much more time for data acquisition,
with an access to all picks at all stations.

Both BMC and PMC will produce a model of the spa-
tial distribution of Mc. The BMC model is, by design, much
more simplistic, as it does not differentiate between the cap-
ability of detection for each station in the way PMC does.
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Nevertheless, the BMC model can be used in the same way as
PMC to investigate and plan enhancements to existing seis-
mic networks by placing virtual stations and investigating
their impact on the completeness (Nanjo, Schorlemmer, et al.,
2010). BMC and PMC make substantially different assump-
tions: BMC is based on the FMD and assumes a Gutenberg–
Richter behavior, while PMC does not. Therefore, if one is
interested in specifically looking for deviations from the
Gutenberg–Richter law, PMC may be the adequate choice.

On the other hand, if one seeks to map b values, the BMC
method offers the benefit of inherent compatibility with the
computation of b.

Another benefit of the BMC approach lies in eliminating
the fixed-radius or fixed-number mapping approach, which
was used in all previous applications (Fig. 3). Our iterative
procedure strives to find an optimized spatial resolution
based on the density of seismic stations. This approach will
make the sampling volumes as large as feasible given the
local gradient in Mc (Fig. 5).

The functional form we choose to represent the depen-
dence of Mc on station density (equation 2; Fig. 5) is simple
by design and only very generally captures the physical pro-
cesses governing attenuation with distance. Because a more
physics-based attenuation model would need to consider
frequency dependence, scaling with magnitude, 3D effects,
and more, we consider the simple functional form that fits the
Mc�d� data directly as a simpler but more constrained
approach. One of the potential shortcomings of this approach
is that our model may not be very accurate when it is extra-
polated beyond the data range on which it is based.

Seismic Network Coverage in Taiwan

High-resolution spatial variations of magnitude comple-
teness in the CWBSN of Taiwan have not been discussed in
the literature so far. We present a number ofMc maps for the
region of Taiwan over the period 1994–2010, first, using the
common mapping method developed by Wiemer and Wyss
(2000) for different spatial resolutions and for two tech-
niques, MAXC and MBASS (Fig. 3), and second, using the
newly proposed BMC method (Fig. 6).

A comparison of the Mc maps obtained by the two dif-
ferent mapping approaches shows that one could use the con-
stant radius approach with Rfix � 20 km to get a reasonable
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Figure 7. Consistency of the model Mc � f�d� for different
time windows. The model (see equation 2) is represented in gray
and corresponds to the fit obtained for the period 1994–2010
(see Fig. 5b). Deviations from the model are insignificant for the
periods 1994–1998 and 1999–2003. For the period 2004–2010,
Mc tends to decrease faster with decreasing d, but remains within
the 1σ confidence range.

Figure 8. BMC maps (i.e., maps of the posterior completeness magnitude Mpost
c ) for the period (a) 1994–2003 and (b) 2004–2010.
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idea of the magnitude of completeness in Taiwan (see Mc

contours in Figs. 3 and 6e), irrespective of whether one is
using MBASS or MAXC. However, the BMC map (Fig. 6e)
shows a higher resolution of Mc in the dense part of the
network, which allows for finer seismicity analyses of inland
Taiwan. In contrast, past studies investigating seismicity
patterns in Taiwan usually considered only one magnitude
cutoff for the region of interest (Chen et al., 2005, 2006;
Chen and Wu, 2006; Wu and Chiao, 2006; Wu and Chen,
2007; Wu, Chen, and Rundle, 2008). The BMC map shows
that the completeness magnitude for inland Taiwan is Mc ≈
2:4 over the period 1994–2010, as highlighted by the white
outer contour of Figure 6e. Note thatMc can be as low as 1.4
locally (areas shown in yellow).

Nanjo, Ishibe, et al. (2010) describe the improvement of
the seismic network of the Japanese Meteorological Agency
by computing Mc maps for different periods of time. In the
case of Taiwan, the network remains almost unchanged over
the past 16 yr. We tested the BMC method for different time
windows.We verified that deviations from the model of equa-
tion (2) were insignificant (i.e., lower than the magnitude
increment of 0.1) for any distance d for most periods tested,
except for time windows starting in 2004. For the period
2004–2010, Mc decreases by more than 0.1 units in the
low d range, although the estimate remains within the 1σ limit
(Fig. 7). This general agreement suggests that the model
(equation 2) is robust.

According to the staff of the CWB, the network in itself
did not change over the period 1994–2010, but a change in the
recording system was made after 2003: The continuous re-
cording sampling rate increased from 50 to 100 samples
per second. This could explain the deviation observed in the
model for the corresponding period. Figure 8 shows BMC
maps for the periods 1994–2003 and 2004–2010. While
the conservative estimate Mc � 2:4 remains valid for inland
Taiwan for any period of time, starting in 2004,Mc has been
improved in most parts of the country, in agreement with the
deviation observed in Figure 7. Therefore, we recommend
that users perform seismicity analyses over the period
2004–2010 to maximize the number of low-magnitude events
(Fig. 8b). If a longer time frame is required for the seismicity
analysis, the user should combine the two BMC maps from
Figure 8 and keep the maximum Mc value for each cell to
get a conservative estimate, as already proposed by Nanjo,
Schorlemmer, et al. (2010) when using the PMC method.

Applicability to Other Regions

The BMC method can be applied in any region where
coordinates of seismic stations of the relevant network are
available. However, depending on the spatial distribution
of the stations and earthquake density, the relationship
Mpred

c � f�d� may or may not be well constrained. Optimal
conditions for constraining the model include (1) many earth-
quakes, (2) an even coverage of seismic stations in space, and

(3) no significant spatiotemporal changes in the seismic
network, such as the addition of temporary local networks.

If the parameters of the model cannot bewell constrained
from a particular regional data set, we propose to directly use
equation (2) with the parameter values estimated here as a
first-order estimate and to follow the same two-step proce-
dure. This assumes that differences in seismic signal attenua-
tion between Taiwan and other regions do not significantly
corrupt the relationshipMpred

c � f�d�. This should be verified
by comparing different regional spatial models of Mc.

Deviations from the Proposed Mc Model

For the sake of simplicity and conciseness, the proposed
model does not take into account changes of the completeness
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Figure 9. Mc versus time using the Taiwan CWB catalog. Mov-
ing window approach (a) with window of size S � 10; 000 events,
moving every 2500 events and (b) S � 1; 000 events, moving every
250 events. The solid curve represents the mean Mc value, and the
dashed curves the 99% confidence bounds. Horizontal lines corre-
spond to Mbulk

c �MAXC� and associated 99% confidence bounds
(see Fig. 2a).
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magnitude of the Taiwan CWB seismic network with depth.
Our mapping approach consists of computing Mc from all
events located in vertical cylinders centered on each grid cell,
as done in earlier studies (e.g., Wiemer and Wyss, 2000;
Schorlemmer and Woessner, 2008; Hutton et al., 2010). If
we use a maximum depth of 5 km, similar to the cell width
of 0.05°, instead of 35 km,Mc tends to be slightly lower in the
dense part of the network. In the presentwork,we prefer to use
epicentral locations, which leads to a conservative estimate of
Mc. The influence of hypocentral locations on the spatialMc

model should be investigated in the future and compared to
results from studies mappingMc cross sections (e.g., Wiemer
and Wyss, 2000). A relocated catalog should also be used to
minimize the impact of the error on hypocentral locations
(Wu, Chang, et al., 2008).

Figure 9 shows a plot of Mc versus time for the Taiwan
CWB earthquake catalog. We used a moving window ap-
proach to compute Mc, as done by Woessner and Wiemer
(2005). We see that Mc remains stationary for most of the
period 1994–2010, in agreement with the fact that the
CWBSN remained stable during that time. We note a tempor-
ary increase inMc of several magnitudes because some events
are too small to be detected in the coda of the 1999 Mw 7.6
Chi-Chi earthquake and its aftershock sequence (Shin
and Teng, 2001). Such a temporary change in Mc is not
accounted for in our model, which assumes that all seismic
stations have approximately constant detection ability over
time. Nonetheless, we see that the Mc changes in 1999 do
not perturb the value of Mbulk

c (computed for the full time
period; see Fig. 2a), in agreement with the observation
that MAXC underestimates the completeness magnitude
when spatiotemporal heterogeneities are present. In the pre-
sent case, it allows us to filter the effects of the Chi-Chi
earthquake.

To model the effect of episodic large earthquakes onMc,
another approach should be used (e.g., Iwata, 2008), or our
model should be improved to take into account variable de-
tection abilities at each seismic station. Regarding this source
of error, we also observe that the completeness magnitude
was slightly higher during daytime because human activity
increases the noise-to-signal ratio (Rydelek and Sacks,
1989). Finally, contrary to the PMC approach (Schorlemmer
and Woessner, 2008), we did not take into account the on/off
time of stations, which could change our Mc results locally.
We suspect that in the case of the Taiwan earthquake, the
influence will be small because of the stability of the network
over the period 1994–2010.

Conclusions

We proposed a simple model to compute the complete-
ness magnitude Mc in space, based on the distribution of
seismic stations. We obtain the following relationship from
the 1994–2010 Taiwan CWB earthquake catalog:

Mpred
c �d; k � 5� � 9:42d0:0598 � 9:60; σ � 0:18;

Mpred
c �d; k � 4� � 5:96d0:0803 � 5:80; σ � 0:18;

Mpred
c �d; k � 3� � 4:81d0:0883 � 4:36; σ � 0:19;

where d is the distance to the kth nearest seismic station, and
σ is the standard deviation of the Mc estimate.

We then described a new Mc mapping approach, the
BMC method, which consists of two steps, (1) a spatial
resolution optimization procedure to minimize spatial het-
erogeneities and uncertainties in Mc estimates, and (2) a
Bayesian approach to take into account prior information
based on the seismic network configuration as well as the
observed local Mc values and their respective uncertainties.

BMC shows a number of improvements compared to the
Mc mapping approach proposed by Wyss et al. (1999) and
used in many other studies (e.g., Wiemer and Wyss, 2000;
Woessner and Wiemer, 2005; Hutton et al. 2010):

• No gaps in the spatial estimation ofMc and its uncertainty,
• Higher resolution of Mc in the dense part of the seismic
network,

• Minimal errors in Mc and σ0 estimates due to spatial het-
erogeneities,

• No assumption or educated guess required to set the input
parameters r and Nmin.

Studies investigating seismicity patterns in Taiwan,
such as possible precursors to large earthquakes, usually con-
sider only one magnitude cutoff for the whole region
(Chen et al., 2005, 2006; Chen and Wu, 2006; Wu and
Chiao, 2006; Wu and Chen, 2007; Wu, Chen, and Rundle,
2008). We recommend using a variableMc�x; y�, as shown in
the BMC maps of Figure 8.

Our approach can be applied in any region for which the
coordinates of seismic stations are available. If no spatial
model can be derived for a given region due to poor data,
we propose to directly use the relationship Mpred

c � f�d�
found for Taiwan as a first-order estimate.

Data and Resources

The earthquake catalog used in this study was provided
by the Central Weather Bureau, the government meteorolo-
gical research and forecasting institution of Taiwan (R.O.C.).

Acknowledgments

The authors wish to thank Associate Editor Martin C. Chapman, as
well as Yan Kagan and an anonymous reviewer who supplied numerous
constructive comments, resulting in a much-improved paper. The authors
are also grateful to Jochen Woessner for reading the manuscript before
submittal. This project was partially funded by the Sino-Swiss Science
and Technology Cooperation. M. J. Werner was supported by the Compe-
tence Center Environment and Sustainability (CCES) project EXTREMES
of ETH.

1382 A. Mignan, M. J. Werner, S. Wiemer, C.-C. Chen, and Y.-M. Wu



References

Aki, K. (1965). Maximum likelihood estimate of b in the formula logN �
a � bM and its confidence limits, Bull. Earthq. Res. Inst. Tokyo Univ.
43, 237–239.

Amorèse, D. (2007). Applying a change-point detection method on
frequency-magnitude distributions, Bull. Seismol. Soc. Am. 97, doi
10.1785/0120060181.

Cao, A. M., and S. S. Gao (2002). Temporal variations of seismic b-values
beneath northeastern Japan island arc, Geophys. Res. Lett. 29, doi
10.1029/2001GL013775.

Castellaro, S., F. Mulargia, and Y. Y. Kagan (2006). Regression problems for
magnitudes, Geophys. J. Int. 165, doi 10.1111/j.1365-246X.2006
.02955.x.

Chen, C.-C., and Y.-X. Wu (2006). An improved region-time-length
algorithm applied to the 1999 Chi-Chi, Taiwan earthquake, Geophys.
J. Int. 166, doi 10.1111/j.1365-246X.2006.02975.x.

Chen, C.-C., J. B. Rundle, J. R. Holliday, K. Z. Nanjo, D. L. Turcotte,
S.-C. Li, and K. F. Tiampo (2005). The 1999 Chi-Chi, Taiwan, earth-
quake as a typical example of seismic activation and quiescence,
Geophys. Res. Lett. 32, L22315, doi 10.1029/2005GL023991.

Chen, C.-C., J. B. Rundle, H.-C. Li, J. R. Holliday, D. L. Turcotte, and
K. F. Tiampo (2006). Critical point theory of earthquakes: Observation
of correlated and cooperative behavior on earthquake fault systems,
Geophys. Res. Lett. 33, L18302, doi 10.1029/2006GL027323.

Efron, B. (1979). 1977 Rietz lecture, bootstrap methods—Another look at
the jackknife, Ann. Stat. 7, 1–26.

Gomberg, J. (1991). Seismicity and detection/location threshold in the
Southern Great Basin seismic network, J. Geophys. Res. 96,
16,401–16,414.

Gutenberg, B., and C. F. Richter (1944). Frequency of earthquakes in
California, Bull. Seismol. Soc. Am. 34, 184–188.

Habermann, R. E. (1987). Man-made changes of seismicity rates, Bull.
Seismol. Soc. Am. 77, 141–159.

Helmstetter, A., Y. Y. Kagan, and D. D. Jackson (2007). High-resolution
time-independent grid-based forecast for M ≥ 5 earthquakes in
California, Seismol. Res. Lett. 78, 78–86.

Hutton, K., J. Woessner, and E. Hauksson (2010). Earthquake monitoring in
Southern California for seventy-seven years (1932–2008), Bull.
Seismol. Soc. Am. 100, doi 10.1785/0120090130.

Iwata, T. (2008). Low detection capability of global earthquakes after the
occurrence of large earthquakes: Investigation of the Harvard CMT
catalogue, Geophys. J. Int. 174, doi 10.1111/j.1365-246X.2008
.03864.x.

Kagan, Y. Y. (2002). Seismic moment distribution revisited: I. Statistical
results, Geophys. J. Int. 148, 520–541.

Kagan, Y. Y. (2003). Accuracy of modern global earthquake catalogs, Phys.
Earth Planet. In. 135, 173–209, doi 10.1016/S0031-9201(02)00214-5.

Kvaerna, T., and F. Ringdal (1999). Seismic threshold monitoring for con-
tinuous assessment of global detection capability, Bull. Seismol. Soc.
Am. 89, 4, 946–959.

Kvaerna, T., F. Ringdal, J. Schweitzer, and L. Taylor (2002a). Optimized
seismic threshold monitoring—Part 1: Regional processing, Pure
Appl. Geophys. 159, 969–987.

Kvaerna, T., F. Ringdal, J. Schweitzer, and L. Taylor (2002b). Optimized
seismic threshold monitoring—Part 2: Teleseismic processing, Pure
Appl. Geophys. 159, 989–1004.

Marsan, D. (2003). Triggering of seismicity at short timescales following
Californian earthquakes, J. Geophys. Res. 108, doi 10.1029/
2002JB001946.

Nanjo, K. Z., T. Ishibe, H. Tsuruoka, D. Schorlemmer, Y. Ishigaki, and
N. Hirata (2010). Analysis of the completeness magnitude and seismic
network coverage of Japan, Bull. Seismol. Soc. Am. 100, doi 10.1785/
0120100077.

Nanjo, K. Z., D. Schorlemmer, J. Woessner, S. Wiemer, and D. Giardini
(2010). Earthquake detection capability of the Swiss Seismic network,
Geophys. J. Int. 181, doi 10.1111/j.1365-246X.2010.04593.x.

Ogata, Y., and K. Katsura (1993). Analysis of temporal and spatial hetero-
geneity of magnitude frequency distribution inferred from earthquake
catalogues, Geophys. J. Int. 113, 727–738.

Rydelek, P. A., and I. S. Sacks (1989). Testing the completeness of
earthquake catalogs and the hypothesis of self-similarity, Nature
337, 251–253.

Rydelek, P. A., and I. S. Sacks (2003). Comment on “Minimum magnitude
of completeness in earthquake catalogs: Examples from Alaska, the
Western United States, and Japan,” by Stefan Wiemer and Max Wyss,
Bull. Seismol. Soc. Am. 93, 1862–1867.

Schorlemmer, D., and J. Woessner (2008). Probability of detecting an earth-
quake, Bull. Seismol. Soc. Am. 98, doi 10.1785/0120070105.

Schorlemmer, D., F. Mele, and W. Marzocchi (2010). A completeness
analysis of the National Seismic network of Italy, J. Geophys. Res.
115, doi 10.1029/2008JB006097.

Shi, Y., and B. A. Bolt (1982). The standard error of the magnitude-
frequency b-value, Bull. Seismol. Soc. Am. 72, 1677–1687.

Shin, T.-C., and T.-L. Teng (2001). An overview of the 1999 Chi-Chi,
Taiwan, earthquake, Bull. Seismol. Soc. Am. 91, 895–913.

Tinti, S., and F. Mulargia (1985). Effects of magnitude uncertainties on
estimating the parameters in the Gutenberg-Richter frequency-
magnitude law, Bull. Seismol. Soc. Am. 75, 1681–1697.

Wang, J. H., K. C. Chen, and T. Q. Lee (1994). Depth distribution of shallow
earthquakes in Taiwan, J. Geol. Soc. China 37, 125–142.

Werner, M. J., and D. Sornette (2008). Magnitude uncertainties impact
seismic rate estimates, forecasts, and predictability experiments,
J. Geophys. Res. 113, B08302, doi 10.1029/2007JB005427.

Werner, M. J., K. Ide, and D. Sornette (2011). Earthquake forecasting based
on data assimilation: Sequential Monte Carlo methods for renewal
processes, Nonlinear Process. Geophys. 18, 49–70, doi 10.5194/
npg-18-49-2011.

Werner, M. J., A. Helmstetter, D. D. Jackson, and Y. Y. Kagan (2011).
High-resolution long-term and short-term earthquake forecasts for
California, Bull. Seismol. Soc. Am. 101, 4, in press.

Wiemer, S., and K. Katsumata (1999). Spatial variability of seismicity
parameters in aftershock zones, J. Geophys. Res. 104, 13,135–13,151.

Wiemer, S., and D. Schorlemmer (2007). ALM: An asperity-based
likelihood model for California, Seismol. Res. Lett. 78, 134–140.

Wiemer, S., and M. Wyss (2000). Minimum magnitude of complete
reporting in earthquake catalogs: Examples from Alaska, the Western
United States, and Japan, Bull. Seismol. Soc. Am. 90, 859–869.

Wiemer, S., and M. Wyss (2003). Reply to “Comment on ‘Minimum
magnitude of completeness in earthquake catalogs: Examples from
Alaska, the Western United States, and Japan’ by Stefan Wiemer
and Max Wyss,” by Paul A. Rydelek and Sacks I. S., Bull. Seismol.
Soc. Am. 93, 1868–1871.

Wikle, C. K., and L. M. Berliner (2007). A Bayesian tutorial for data
assimiliation, Phys. D Nonlinear Phenom. 230, doi 10.1016/
j.physd.2006.09.017.

Woessner, J., and S. Wiemer (2005). Assessing the quality of earthquake
catalogues: Estimating the magnitude of completeness and its uncer-
tainty, Bull. Seismol. Soc. Am. 95, doi 10.1785/0120040007.

Wu, Y.-M., and C.-C. Chen (2007). Seismic reversal pattern for the 1999
Chi-Chi, Taiwan, Mw 7.6 earthquake, Tectonophys. 429, doi
10.1016/j.tecto.2006.09.015.

Wu, Y.-M., and L. Y. Chiao (2006). Seismic Quiescence before the 1999
Chi-Chi, Taiwan Mw 7.6 Earthquake, Bull. Seismol. Soc. Am. 96,
doi 10.1785/0120050069.

Wu, Y.-M., R. M. Allen, and C.-F. Wu (2005). RevisedML determination for
crustal earthquakes in Taiwan, Bull. Seismol. Soc. Am. 95, doi 10.1785/
0120050043.

Wu, Y.-M., C.-H. Chang, L. Zhao, T.-L. Teng, and M. Nakamura (2008). A
comprehensive relocation of earthquakes in Taiwan from 1991 to
2005, Bull. Seismol. Soc. Am. 98, doi 10.1785/0120070166.

Wu, Y.-H., C.-C. Chen, and J. B. Rundle (2008). Detecting precursory
earthquake migration patterns using the pattern informatics method,
Geophys. Res. Lett. 35, L19304, doi 10.1029/2008GL035215.

Bayesian Estimation of the Spatially Varying Completeness Magnitude of Earthquake Catalogs 1383

http://dx.doi.org/10.1785/0120060181
http://dx.doi.org/10.1029/2001GL013775
http://dx.doi.org/10.1111/j.1365-246X.2006.02955.x
http://dx.doi.org/10.1111/j.1365-246X.2006.02955.x
http://dx.doi.org/10.1111/j.1365-246X.2006.02975.x
http://dx.doi.org/10.1029/2005GL023991
http://dx.doi.org/10.1029/2006GL027323
http://dx.doi.org/10.1785/0120090130
http://dx.doi.org/10.1111/j.1365-246X.2008.03864.x
http://dx.doi.org/10.1111/j.1365-246X.2008.03864.x
http://dx.doi.org/10.1016/S0031-9201(02)00214-5
http://dx.doi.org/10.1029/2002JB001946
http://dx.doi.org/10.1029/2002JB001946
http://dx.doi.org/10.1785/0120100077
http://dx.doi.org/10.1785/0120100077
http://dx.doi.org/10.1111/j.1365-246X.2010.04593.x
http://dx.doi.org/10.1785/0120070105
http://dx.doi.org/10.1029/2008JB006097
http://dx.doi.org/10.1029/2007JB005427
http://dx.doi.org/10.5194/npg-18-49-2011
http://dx.doi.org/10.5194/npg-18-49-2011
http://dx.doi.org/10.1016/j.physd.2006.09.017
http://dx.doi.org/10.1016/j.physd.2006.09.017
http://dx.doi.org/10.1785/0120040007
http://dx.doi.org/10.1016/j.tecto.2006.09.015
http://dx.doi.org/10.1785/0120050069
http://dx.doi.org/10.1785/0120050043
http://dx.doi.org/10.1785/0120050043
http://dx.doi.org/10.1785/0120070166
http://dx.doi.org/10.1029/2008GL035215


Wyss, M., A. Hasegawa, S. Wiemer, and N. Umino (1999). Quanti-
tative mapping of precursory seismic quiescence before the 1989,
M 7.1 off-Sanriku earthquake, Japan, Ann. Di Geofis. 42, 851–869.

Zuniga, F. R., and S. Wiemer (1999). Seismicity patterns: Are they always
related to natural causes?, Pure Appl. Geophys. 155, 713–726.

Zuniga, F. R., and M. Wyss (1995). Inadvertent changes in magnitude
reported in earthquake catalogs: Their evaluation through b-value
estimates, Bull. Seismol. Soc. Am. 85, 1858–1866.

Appendix

Verification of Mc Uncertainties
Obtained from Bootstrapping

Are the estimated uncertainties in the completeness
magnitude obtained from bootstrapping reliable? In particu-
lar, are small uncertainties realistic if they are based on small
sample sizes? In this appendix, we provide evidence that
uncertainty estimates based on bootstrapping are indeed
reliable, even for small sample sizes, and that the observed
large fluctuations of the standard errors for the same small
sample size are an accurate reflection of how well a parti-
cular sample of magnitudes can constrain the completeness
magnitude.

To do this, we perform a synthetic test: We simulate a
large data set of magnitudes with known Mc, draw many
random samples of equal size from the synthetic catalog,
estimate Mc and its standard error using bootstrapping from
each sample, and then compare the obtained Mc with the
true Mc for each sample. The observed Mc should be close
to the true Mc if the estimated uncertainty is small, and
vice versa.

The synthetic FMD is based on the model of Ogata and
Katsura (1993), according to which, the intensity rate λ�M�
at magnitude M is given by the product of the intensity rate
λ0�M� expected by the Gutenberg–Richter law and a
network detection rate q�M�:

λ�M� � λ0�M� × q�Mjμ; σ�

� exp��βM� ×
Z

M

�∞
1������
2π

p
σ
exp

��X � μ�2
2σ2

dx;

(A1)

where β is the b value in the log�10� scale, μ stands for the
magnitude at which 50% of earthquakes of magnitudeM are
detected, and σ characterizes the sharpness of the transition
from unlikely to likely detection. Kagan (2002) argued that
the Ogata and Katsura model (Ogata and Katsura, 1993)
should be used with caution because it assumes statistical sta-
bility of the unreliable, only partially detected range of the
data set and a particular parametric detection probability rate.
But for the purposes of this synthetic test, in which we seek to
determine the reliability of uncertainty estimates based on
bootstrapping for different sample sizes, these concerns
should not matter. Their model is a reasonable approximation
to observed FMDs, and that is all we require here.

We set the parameter values of the FMD to b � 1, μ � 2,
and σ � 0:3 and simulate a total number of events Ntotal of
more than 10,000.We next selectNr � 1000 random samples
(denoted by in) of equal sample size n from the synthetic data
set and repeat this random selection of samples for increasing
sample size, n � �4; 5; 6; 7; 8; 9; 10; 20; 50; 100; 500; 1000�.
For each random sample in of size n, we estimate the com-
pleteness magnitude Mi;n

c and its uncertainty σi;n
0 by using

the MAXC technique: Each sample in is bootstrapped (with
replacement) Ns � 200 times to compute Mi;n

c (the mean
of the 200MAXC estimates ofMc) and σi;n

0 (the standard error
of the 200 MAXC estimates of Mc).

To measure the distance between the estimated and the
true Mc, we define the following metric:

εi;n � jMi;n
c �Mcj
σi;n
0

; (A2)

where εi;n is the absolute error of the Mc estimate based on
the ith sample of size n, normalized by the corresponding
estimated uncertainty. If the estimated uncertainty σi;n

0 is re-
liable, then the distribution Pn�ε� of normalized absolute
errors should approximate a one-sided Gaussian distribution
for each sample size n. In particular, the 0.68, 0.95, and 0.99
percentiles of the distribution Pn�ε� should be equal to 1, 2,
and 3, respectively.

Figure A1 shows the 0.68, 0.95, and 0.99 percentiles of
Pn�ε� versus the sample size n. By assuming a normal

5 10 20 50 100 200 500 1000 2000

0
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4
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n

P
(ε

)

Figure A1. The 0.68, 0.95, and 0.99 percentiles of the normal-
ized absolute error distribution Pn�ε� versus sample size n.
The 0.68, 0.95, and 0.99 percentiles are lower than 1, 2, and 3, re-
spectively, for any sample size n, suggesting that bootstrapping
overpredicts Mc uncertainties and provides conservative estimates
of σ0 when assuming Gaussian uncertainties ofMobs

c . The parameter
ε (equation A2) is computed from Ns � 200 bootstrap samples
(in black) and from Ns � 1000 (in gray).
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distribution of the Mc estimates with standard deviation σ0,
bootstrapping overpredicts uncertainties for all sample sizes
ranging from n � 4 to n � 1000 at the 99% or 3σ level when
considering a reasonable FMD model (Ogata and Katsura,
1993). We verified that these results, obtained for Ns �
200 bootstrap samples, did not vary significantly for larger
Ns (Ns � 1000, represented in gray in Fig. A1).

The result that bootstrapping gives conservative un-
certainty estimates at any sample size n is based on three
assumptions, namely, that the FMD model by Ogata and
Katsura (1993) and our chosen parameters are a realistic
model of the magnitude distribution anywhere (which might
not be true in volcanic regions), that self-similarity holds in
a volume as small as our chosen cell size (minimum area of
0:05° × 0:05° in Taiwan), and that Mc can be defined as the
magnitude bin with the highest frequency of events in the
noncumulative FMD (MAXC definition). For other tech-

niques (MBASS, EMR, and GFT), bootstrapping uncertainty
appears unreliable for small sample sizes (n < 100–200).

Swiss Seismological Service
Institute of Geophysics
ETH-Zürich, Switzerland

(A.M., M.J.W., S.W.)

Department of Earth Sciences
National Central University
Taiwan

(C.-C.C.)

Department of Geosciences
National Taiwan University
Taiwan

(Y.-M.W.)

Manuscript received 15 August 2010

Bayesian Estimation of the Spatially Varying Completeness Magnitude of Earthquake Catalogs 1385


