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a b s t r a c t

We present an entropic component analysis for identifying key parameters or variables and the

joint effects of various parameters that characterize complex systems. This approach identifies key

parameters through solving the variable selection problem. It consists of two steps. First, a Bayesian

approach is utilized to convert the variable selection problem into the model selection problem. Second,

the model selection is achieved uniquely by evaluating the information difference of models by relative

entropies of these models and a reference model. We study a geological sample classification problem,

where a brine sample from Texas and Oklahoma oil field is considered, to illustrate and examine the

proposed approach. The results are consistent with qualitative analysis of the lithology and quantitative

discriminant function analysis. Furthermore, the proposed approach reveals the joint effects of the

parameters, while it is unclear from the discriminant function analysis. The proposed approach could

be thus promising to various geological data analysis.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Identifying key parameters or variables, which characterize
complex systems from experimental datum, is a necessary and
yet difficult data analysis process for further investigations in
science and engineering. Many methods such as principal com-
ponent analysis (PCA) (Jolliffe, 2002), independent component
analysis (ICA) (Comon, 1994; Stone, 2004), discriminant function
analysis (DFA) (Davis, 2002), etc. have been proposed to provide
an objective approach to accomplish this goal. These approaches
basically project possible parameters either into principal com-
ponents using the PCA or the DFA or independent components
using the ICA. These components, linear combinations of the
parameters with specific weightings, are then used to character-
ize the complex systems of interest. Yet there are no assessments
regarding effects of individual parameter on the complex systems
directly from these approaches and does not directly identify key
parameters either.

Alternatively, one can treat the identification of key para-
meters as a variable selection problem. One standard approach to
tackle the variable selection problem is to convert the problem
into a model selection problem. A model constructed from the
data is associated with the possible parameters or variables and
ll rights reserved.
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experimental responses. Therefore, selecting variables is identical
to selecting models.

Many strategies have been proposed for model selection.
In standard statistics, the P-value method selects a model based
on a hypothesis-testing procedure. However, it is limited to two-
model selection problems (Raftery, 1995). Some other
approaches, such as those based on the Akaike information
criterion (AIC) (Akaike, 1974), the Bayesian information criterion
(BIC) (Schwarz, 1978; Raftery, 1995; Kieseppa, 2000; Forbes and
Peyrard, 2003), the C information criterion (CIC) (Rodriguez,
2005), generalizations of the BIC and the AIC, and the relative
entropy, the mutual information, or Kullback–Leibler distance
(Bonnlander and Weigend, 1994; Dupuis and Robert, 2003),
attempt to provide another appropriate selection criterion for
multiple models. Alternatively, one can select a model according
to a quantity that we have called the ‘‘preference’’. Tseng (2006)
showed that the preference of a model could be uniquely
obtained by evaluating the relative entropy of the model and a
reference model.

In this work, we propose an entropic component analysis
(ECA) based on the concept of variable selection to identify
key parameters to optimally characterize the complex systems.
The proposed approach consists of two steps. First, we utilize a
Bayesian approach to model the systems of interest instead of
seeking out common regression approaches. The idea is applying
Bayes’ theorem to update our prior knowledge of a system
according to experimental data of input parameters to obtain a
posterior probability distribution model of observing responses.
Second, we consider the method of maximum entropy as a tool to
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rank the model. Based on the axiomatic approach used in develop-
ing the maximum entropy method as a tool for assigning a
probability to a system (Jaynes, 1957) and for updating probabilities
(Shore and Johnson, 1980, 1981; Skilling, 1988, 1989, 1990; Caticha,
2004), we will show that preferences of the parameters can be
uniquely determined by evaluating the relative entropy of the
models with respect to a reference.

We examine the ECA by studying a geological sample classifica-
tion problem, whether some brine samples from oil field waters in
Texas and Oklahoma (Davis, 2002) belong to the Grayburg Dolomite.
In addition, the results obtained from the ECA are compared with a
qualitative analysis of the lithology and a quantitative analysis based
on a discriminant function analysis. We also apply the receiver
operator characteristic analysis (ROC) (Johnson and Albert, 1999) to
examine the performance of the ECA.

The structure of paper is as following. Section 2 presents
the ECA. Section 3 discusses the example to examine the ECA.
The first two sections present a qualitative discussion and a
quantitative analysis based on DFA. The remaining sections then
present the ECA analysis. Finally, the conclusions are given.
2. Entropic component analysis

2.1. From variable selection to model selection

To appropriately model the system of interests, we apply a
Bayesian approach. First, we only consider a binary-output
problem here. The positive response of the ith observation is
denoted by yi

¼1 and the negative response is yi
¼0. Next, we

assume the information regarding properties of the system of
interest before any studies on that system are conducted is
described by a prior probability distribution of observing positive
responses P(yi

¼1). Finally, suppose N parameters that character-
ize the system are measured and denoted by Xi ¼ fxj

ig, where
subscript j¼ 1, . . ., N labels parameter and superscript i¼ 1, . . ., l

labels the observations. Furthermore, l corresponding responses
or dependent variables measured are denoted by

_
Y ¼ fyig.

Given the above three considerations, the posterior probability
updated from the prior distribution P(yi

¼1) according to mea-
surements Xi ¼ fxi

jg can be obtained from Bayes’ theorem,
Pðyi ¼ 19Xi, b̂Þ ¼ Pðyi ¼ 1ÞLyj ðXi, b̂Þ, where Lyi ¼ 1ðX

i, b̂Þ is the like-
lihood function and b̂¼ fb̂1, b̂2, . . ., b̂Ng are maximum likelihood
estimates (MLE) (Johnson and Albert, 1999). This probability
distribution is then considered to be the preferred probability
model to associate the observations with the systems. For N

parameters, there are 2N
�2 different combinations (sets) Si of

parameters XSiAX. Similarly, one also can define submodels as
Pðyi ¼ 19Xi

Si
, b̂Þ. Thus selecting the parameters XSiAX is identical to

selecting the corresponding Pðyi ¼ 19Xi
Si

, b̂Þ. The ranking scheme of
parameters can be pertinently obtained through determining the
ranking scheme of the posterior probability models.
2.2. Ranking scheme

The axiomatic approach suggested a solution to rank models by
the preference of models. As shown in Shore and Johnson (1980,
1981), Skilling (1988, 1989, 1990), and Caticha (2004), it uniquely
determines the preference S of probability models p(x). In this
approach, the axioms used reflect the condition that one must not
change mind frivolously when ranking the probability distributions,
and that whatever information was originally codified into the
probability distribution is important and should be preserved. Three
axioms, locality, coordinate invariance and consistency chosen for this
purpose (Caticha, 2004) are briefly discussed below.
The locality axiom states that local information has local effects.

This axiom results with non-overlapping domains of parameter x

contribute additively to the quantity S[p]¼
R

dxF(p(x),x), where F is
some unknown function.

The second axiom, coordinate invariance, states that the ranking

should not depend on the system of coordinates. The coordinates or
parameters x used to label the system are arbitrary. In
certain situations, we might have explicit reasons to believe that a
particular choice of coordinates should be preferred over other
possibilities. But unless evidence has in fact been given, we should
not assume it. Namely, if there is no evidence to indicate that a set of
parameters x is preferred over another set, the ranking of probabilities
defined by these two sets of parameters should be independent of the
coordinates, the two sets of parameters. A consequence of this axiom
is that S[p]¼

R
dxm(x)f(p(x)/m(x)) involves coordinate invariant such as

dxm(x) and p(x)/m(x), where the density m(x) represents a Jacobian
and f are, at this point, undetermined.

The third axiom states that when a system is composed of
subsystems that are believed to be independent, it should not matter
whether we treat them separately or jointly. Namely, probability
distributions of the system and the independent subsystems must
satisfy the product rule of probability theory. This axiom restricts the
function f to being a logarithm.

The overall consequence of these three axioms is that the
probability distribution p(x) should be ranked relative to m(x)
according to the functional form

S p, m½ � ¼ �

Z
dxpðxÞlog

pðxÞ

mðxÞ
r0, ð1Þ

where this quantity is called relative entropy.
To determine m(x), in principle, the real underlying function

that associates with input parameters and responses should be
chosen as the reference. However, it is difficult to determine such
a real underlying function practically. As suggested by Tseng
(2006), we also consider a uniform distribution m¼1/l, which
represents the complete ignorance of the system of interests and
contains no information. Rewriting Eq. (1) gives

S½p, m� ¼ logmþS½p�, ð2Þ

where S½p� ¼ �
R

dxpðxÞlogpðxÞ. Increasing S[p,m] indicates that p(x)
tends to become information free. Therefore, given a family of all
possible models, the preferred one that contains mostly informa-
tion relevant to the system will minimize S[p,m]. Namely, para-
meters considered in such a model will be the preferred key
parameters.

2.3. Analysis strategy

The above derivation has singled out S[p,m] as the unique
entropy to be used for the purpose of ranking probability
distributions. Other expressions may be useful for other purposes,
but they are not a generalization from the simple cases described
in axioms above. Furthermore, it can be applied to all kinds of
probability models. However, when the number of input para-
meters gets large, ranking all possible submodels is unwieldy and
slow. We propose a two-step approach, ECA, to efficiently identify
key parameters and analyze the joint effects of various combina-
tions of parameters. The first step evaluates the ranking scheme
of all single variables. From which, one can determine variables
that are highly likely responsible to responses of the system.
Given these parameters, the second step enumerates the ranking
scheme of various combinations of rest of parameters. The
characteristics of the system may then be inferred from these
results.

Next, we will illustrate the use of the ECA in detail by studying
a geological sample classification problem (Davis, 2002).
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3. Example: a geological sample classification problem

3.1. The problem

Saltwater is trapped in sedimentary rocks when they are
formed in a marine environment. The chemical composition of
the connate water is subsequently modified by several mechan-
isms including ion exchange, mixing with other brines, dilution,
and infiltrating surface water. Brines recovered during drillstem
tests of wells may have relict compositional characteristics that
provide clues to the origin or depositional environment of their
source rocks. Two questions need to be addressed before further
investigations. The first question is ‘‘How does one classify such
samples through compositional analysis?’’ and the second is
‘‘Which compositions play key roles in the depositional process?’’

To illustrate the application of the ECA scheme to answer both
questions, we consider an example of a set of analyses of oil
field water from three groups of carbonate units in Texas and
Oklahoma (Davis, 2002). The data from one of the analyses are
given in Table 1. The fi Th column in Table 1 denotes whether the
brine samples belong to a specific carbonate unit, the Grayburg
Dolomite, referred to as unit G here for short. There are 19
measurements regarding the responses and the concentrations
of the six chemical compounds. These six chemical compounds
are treated as parameters. There are five positive experimental
responses, yi

¼1, denoted by the symbol ‘‘Y’’, and 14 negative
responses, yi

¼0, denoted by the symbol ‘‘N’’. Before we apply the
ECA to answer questions, we present a qualitative analysis of the
lithology and a quantitative analysis based on the discriminant
function method as a benchmark.

3.2. Qualitative analysis of the lithology

Unit G is composed mainly of dolomite (CaMg(CO3)2) and
anhydrite (CaSO4). In ancient geological times, unit G experienced
two important sedimentary processes, of dolomitization, which is
associated with the dissolution of calcite by acidic fluids, and
evaporation (Ostroff, 1967; Roche, 1997; Davis, 2002). Anhydrite
is one of the index products of evaporation. Chalcraft and Ward
(1988) claimed further that the principal diagenetic processes
here included dolomitization, anhydrite occlusion in primary
porosity, and leaching. The dolomitization played a crucial role
in the formation of unit G, and was followed by the anhydrite
Table 1
Chemical analyses (in ppm) of brines recovered from drillstem tests of three

carbonate rock units in Texas and Oklahoma (Davis, 2002).

Unit G HCO3 SO4 Cl Ca Mg Na

N 10.4 30 967.1 95.9 53.7 857.7

N 6.2 29.6 1174.9 111.7 43.9 1054.7

N 2.1 11.4 2387.1 348.3 119.3 1932.4

N 8.5 22.5 2186.1 339.6 73.6 1803.4

N 6.7 32.8 2015.5 287.6 75.1 1691.8

N 3.8 18.9 2175.8 340.4 63.8 1793.9

N 1.5 16.5 2367 412 95.8 1872.5

Y 25.6 0 134.7 12.7 7.1 134.7

Y 12 104.6 3163.8 95.6 90.1 3093.9

Y 9 104 1342.6 104.9 160.2 1190.1

Y 13.7 103.3 2151.6 103.7 70 2054.6

Y 16.6 92.3 905.1 91.5 50.9 871.4

Y 14.1 80.1 554.8 118.9 62.3 472.4

N 1.3 10.4 3399.5 532.3 235.6 2642.5

N 3.6 5.2 974.5 147.5 69 768.1

N 0.8 9.8 1430.2 295.7 118.4 1027.1

N 1.8 25.6 183.2 35.4 13.5 161.5

N 8.8 3.4 289.9 32.8 22.4 225.2

N 6.3 16.7 360.9 41.9 24 318.1
occlusion. One can therefore infer that the process of the dissolu-
tion of calcite by acidic fluids was more significant than anhydrite
occlusion in the formation of unit G. Therefore, the most impor-
tant chemical species in the process is HCO3.

3.3. Quantitative analysis—discriminant function analysis

Davis (2002) proposed the use of discriminant function ana-
lysis (DFA) to quantitatively analyze the problem above. The DFA
is designed to find a set of linear weights for the parameters that
causes a multivariate analog of the F-ratio to be a maximum. It
combines a rationale similar to that of analysis of the variance of
data with computational procedures based on eigenvector calcu-
lations, for example the PCA. A succession of discriminant func-
tions along which the samples are as distinct as possible can thus
be calculated. Therefore, each function represents successively
the most possible efficient discriminator. One can then use DFA
on analyzing multivariate measurements made on the samples
alone to find combinations of measurements that allow various
categories of samples to be distinguished. For detailed calcula-
tions, see Davis (2002).

DFA was applied to determine whether the data given
in Table 1 were distinctive. The first discriminant function
was found to be �0.3765 � [HCO3] �0.0468 � [SO4] +0.0112 � [Cl]
�0.0148 � [Ca] �0.0174 � [Mg] �0.0110 � [Na], which distinctively
separates the samples of unit G from other units. Note that the
notation of square bracket represents the concentration of a
compound. One may argue that the coefficients in the discrimi-
nant function represent weighting factors that indicate effects of
the corresponding parameters. Therefore, since parameters HCO3

and SO4 have two largest factors in magnitude among the six
parameters, it suggests that both parameters play the most
dominant role in the classification. Although this result consists
with the qualitative analysis from the lithology, one should be
cautious of using DFA to select key parameters. There is no
rigorous justification of identifying preference of parameters
through magnitudes of coefficients of a discriminant function.
Besides, it is not straightforward to determine the joint effects of
parameters from DFA.

3.4. Entropic component analysis

3.4.1. Analysis procedure

The first step of ECA is to apply a Bayesian approach to convert
the variable selection problem into the model selection problem.
The success of the ECA hinges on the appropriate choice of the
likelihood functions. Because Cox and Snell (1989) have shown
empirically, the likelihood function for a generic binary-response
system is properly given by the logistic function, we also defined
the logistic likelihood function for the six chemical species,
{HCO3, SO4, Cl, Ca, Mg, Na}, which are denoted by parameters
Xi ¼ fxj

i; i¼ 1, . . ., 19 and j¼ 1 ,. . ., 6g, respectively, with corre-
sponding binary responses in this geological example as

Lyi ¼ 1ðX
i, b̂Þ ¼

exp
P6

j ¼ 1 bjx
i
j

exp
P6

j ¼ 1 bjx
i
jþ1

ð3Þ

Note that xj
i represents the ith concentration measurement for

chemical species j. Afterward, the posterior distribution updated
from a prior distribution P(yi

¼1)¼1/19, which denotes complete
ignorance of the occurrence of the positive response, is given
by Pðyi ¼ 19Xi, b̂Þ ¼ Pðyi ¼ 1ÞLyj ðXi, b̂Þ based on data of Table 1.
The coefficients bj were determined through the MLE method.
A MATLAB code given in Johnson and Albert (1999) was used.
Note that the probability model that includes all six variables
is called the full model. One can have, 26

�2¼62 probability



Table 2
Ranking scheme of the six chemical species. A number ‘‘1’’ denotes a species

considered and ‘‘0’’ denotes a species neglected. The value of the entropy

S½Pðyi ¼ 19Xi
Si

, b̂Þ� is given by Eq. (2) with Pðyi ¼ 19Xi
Si

, b̂Þ. Each row represents a

submodel. Only 22 submodels are listed.

Model HCO3 SO4 Cl Ca Mg Na S½Pðyi ¼ 19Xi
Si

, b̂Þ�

1 0 0 0 0 0 1 6.909(39)

2 0 0 0 0 1 0 6.906(98)

3 0 0 1 0 0 0 6.880(6)

7 0 0 0 1 0 0 4.875(2)

10 0 1 0 0 0 0 3.577(66)

24 1 0 0 0 0 0 1.508(13)
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submodels Pðyi ¼ 19Xi
Sk

, b̂Þ, in which various combinations of
parameters XSk

AX are considered.
After obtaining these 62 submodels, the second step of

ECA then evaluates the ranking scheme of 62 submodels
Pðyi ¼ 19Xi

Sk
, b̂Þ and one full model based on Eq. (2). For each

submodel, we calculated probabilities of positive response for
nineteen measurements. Therefore, the entropy of each submo-
del, S P½ � ¼ �

P19
i ¼ 1 Pðyi ¼ 19Xi

Sk
, b̂ÞlogPðyi ¼ 19Xi

Sk
, b̂Þ, was calcu-

lated by averaging the natural logarithm of corresponding
probabilities of positive response over all nineteen measurements
xj

i. The detailed analysis procedure for identifying key parameters
and joint effects is illustrated in the next section.
47 1 1 0 0 0 0 0.001(87)

48 1 1 0 1 0 0 0.001(85)

49 1 1 1 1 0 0 0.001(76)

50 1 1 0 1 0 1 0.001(74)

51 1 1 1 0 0 0 0.001(73)

52 1 1 0 0 0 1 0.001(72)

53 1 0 1 1 1 1 0.001(63)

54 1 1 1 0 0 1 0.001(59)

55 1 1 0 0 1 0 0.001(59)

56 1 1 1 1 0 1 0.001(57)

57 1 1 1 0 1 0 0.001(56)

58 1 1 0 0 1 1 0.001(56)

59 1 1 0 1 1 0 0.001(56)

60 1 1 1 0 1 1 0.001(55)

61 1 1 0 1 1 1 0.001(55)

62 1 1 1 1 1 0 0.001(55)

63 1 1 1 1 1 1 0.001(54)
3.4.2. Results

The ranking scheme of 62 submodels is shown in Fig. 1, which
plots the entropy value against submodels. The inset plots result
from submodels 40–62. One can roughly group the 62 submodels
into four groups marked in the figure. The label 63 denotes the
full model. The group 1 contains models that have the five largest
entropy values distributed within 6.8 and 7.0; these are (000001),
(000010), (001000), (001010), and (000011), where ‘‘0’’ denotes
that the corresponding parameter is not included in the model,
and ‘‘1’’ denotes the presence of the parameter. Note that the first
(HCO3), second (SO4), and fourth (Ca) parameters are not included
in this group. The group 2 consists of models 21–30 with entropy
values around 2.5, in which the occurrence of the second (SO4)
and the fourth (Ca) parameters are the most (six and seven out
of ten, respectively). When the first (HCO3) and the fifth (Mg)
parameters are considered, we obtain models 40–46, which form
the group 3; this has the second lowest entropy values distributed
within 1 and 1.5. The last 16 models, which consider the first,
(HCO3) and second (SO4) parameters simultaneously, form the
group 4, which has the minimum entropy about 0.001. We list
only submodels from the fourth group and two models that
include either the first (HCO3) or the second (SO4) parameter in
Table 2, and the corresponding entropy values. The first column
denotes the model label as used in Fig. 1 and the second to seven
columns indicate which of the six chemical species are included
in the submodel. The entropy values of submodels, Pðyi ¼ 19Xi

Si
, b̂Þ

are shown in the last column. The ranking scheme of these 22
submodels is in the order of decreasing entropy value.

We subsequently analyzed this ranking scheme in two steps.
First, we analyzed the ranking scheme of the single parameters, as
Fig. 1. Plot of the entropy calculated from Eq. (2) given the probability model

Pðyi ¼ 19Xi
Si

, b̂Þ versus the model label. The models are numbered in order of

entropy value so that model 1 has the largest entropy and is followed by model 2,

and so on. Table 2 gives an example of an exact representation of the model

corresponding to a specific model label.
shown in the first six rows in Table 2, which states that HCO3

(1.508)oSO4 (3.577)oCa (4.875)oCl (6.88)oMg (6.906)oNa
(6.909), where numerical values in the bracket are entropy values.
Since the minimum number of significant figures in the experi-
mental data in Table 1 is three, the entropy value should also have
three significant figures and the fourth digit is just an estimate.
The ranking scheme indicates that the first parameter HCO3

should play a more important role than the second parameter
SO4 in the model.

Second, we examined this result when the joint effects from
combinations of the parameters are included. The last 16 sub-
models in Table 2 all have the minimum entropy value, 0.001.
The preferences of these 16 submodels are indistinguishable.
The digits in parentheses show numerical results, where the
number of significant figures was not considered. This just
indicates that if the number of significant figures were higher,
the resolution of the entropy would be better. In this case,
preferences of these 16 submodels could be identified.

In order to determine the most dominant parameters in these
16 submodels, the frequencies of the six parameters appearing in
these 16 submodels were used as weighting factors. The frequen-
cies of observation of the first and second parameters are 16 and
15, respectively, and 8 for the rest of the parameters. This result
suggests that our ability to interpret the experimental measure-
ments by use of the logistic model is strongly dominated by the
first parameter, HCO3, and the second parameter, SO4. Parameters
3–6 seem to play a minor role here and preference of joint effects
of these parameters are indistinguishable.

This is exactly the same result obtained by using qualitative
and DFA analyses described earlier. However, the ECA provides
more information about the significance of different combinations
of parameters.

3.4.3. Performance examination

At last, we examined the performance of the full model,
covariate free model, and six submodels that associate six single
parameters correspondingly by the ROC analysis (Fig. 2) (Johnson
and Albert, 1999; Chen et al., 2005, 2006, 2007). The ROC diagram



Fig. 2. ROC curves of the full model, covariate model, and six submodels as noted

in the legend. A larger area under the ROC curve indicates higher predicting power

of the model. For the details, please refer to the text.
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is a well-established way to examine the performance of the
model predictor. A ROC graph is a plot with the false positive
fraction on the horizontal axis and the true positive fraction on
the vertical axis. The true positive fraction is the fraction of
positive occurrences of unit G (Table 1, ‘‘Y’’ in the first column)
that were correctly predicted as unit G, while the false positive
fraction is the fraction of not unit G cases (Table 1, ‘‘N’’ in the first
column) that were incorrectly predicted as unit G. The point (0, 1),
which means the false positive fraction is 0 and the true positive
fraction is 1, on an ROC graph is the perfect predictor. It predicts
all occurrences and non-occurrences of unit G correctly. When the
area below a ROC curve of a model (ROC area) is close to 1, the
model highly likely predicts all occurrence and non-occurrence
of unit G correctly. Contrary, when the ROC area is close to 0.5, the
model becomes worthless, i.e. the predicting power of the model
is identical to a random distribution model. Based on the ROC
curve (Fig. 2), we found the predicting power of the full model,
the submodels 24, 10, and 7 (models with HCO3, SO4, and Ca,
respectively) are significantly better than rest of submodels and
the worthless covariate free model. This test also indicates
appropriateness of the usage of the logistic function as the
likelihood function in this problem.

3.4.4. Summary

Based on the above ECA studies, we conclude that the forma-
tion of unit G may strongly involve chemical processes associated
with HCO3. The chemical processes associated with SO4 may play
a minor role in the formation. This is precisely the same result
inferred from the qualitative analysis. Furthermore, the joint
effect analysis shows the indistinguishability of submodels with
and without Cl, Ca, Mg, and Na given HCO3 and SO4. This result
suggests that the formation may be likely independent of chemi-
cal processes with Cl, Ca, Mg, or Na. One may conduct further
analysis in a similar way to extract more information, but this will
not be pursued here. While the formation of rocks involves
complicated processes, classifying the rocks becomes very diffi-
cult. Our results indicate the ECA may provide a quantitative
guidance for investigating formation of the brine samples, which
is not straightforward from the DFA.
4. Conclusions

An entropic component analysis is proposed to identify key
parameters and the joint effects of various combinations of
parameters of a complex system. This approach includes two
steps, a Bayesian approach for converting the variable selection
into the model selection problem and an entropic model selection
approach. We have shown that, after the experimental responses
and the parameters have been associated by means of probability
models, the preferences or the ranking scheme of the probability
models can be uniquely obtained by evaluating relative entropy
of each model with respect to a reference model, Eq. (1). Since a
reference model m(x) is usually difficult to acquire in practice, we
propose to use a uniform probability distribution as the reference.
Thus the preferences of the models are given by the order of
decreasing entropy, Eq. (2), and the preferences of the corre-
sponding parameters can be obtained as well.

We have illustrated the ECA by studying a geological sample
classification problem, of whether some brine samples from oil
field waters in Texas and Oklahoma (Davis, 2002) belong to the
Grayburg Dolomite. The results obtained from ECA are consistent
with a qualitative analysis of the lithology and a quantitative
analysis based on the DFA. In addition to giving consistent results,
however, the ECA also provides a complete analysis of the
significance of different combinations of parameters.

Finally, we remark that in the present work, the parameters’
significance analysis is based on the model selection approach.
However, a model-free selection method proposed by Li et al.
(2005) offers an alternative route. Since it is model-free, this
approach is suitable for data sets that cannot be modeled easily.
Can our ECA be extended to become a model-free analysis? This
question is beyond the scope of the present work, but will be
addressed in the future.
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