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Landslides may obstruct river flow and result in landslide dams; they occur in many regions of the world. The
formation and disappearance of natural lakes involve a complex earth–surface process. According to the
lessons learned from many historical cases, landslide dams usually break down rapidly soon after the
formation of the lake. Regarding hazard mitigation, prompt evaluation of the stability of the landslide dam is
crucial. Based on a Japanese dataset, this study utilized the logistic regression method and the jack-knife
technique to identify the important geomorphic variables, including peak flow (or catchment area), dam
height, width and length in sequence, affecting the stability of landslide dams. The resulting high overall
prediction power demonstrates the robustness of the proposed logistic regression models. Accordingly, the
failure probability of a landslide dam can also be evaluated based on this approach. Ten landslide dams
(formed after the 1999 Chi-Chi Earthquake, the 2008 Wenchuan Earthquake and 2009 Typhoon Morakot)
with complete dam geometry records were adopted as examples of evaluating the failure probability. The
stable Tsao-Ling landslide dam, which was induced by the Chi-Chi earthquake, has a failure probability of
27.68% using a model incorporating the catchment area and dam geometry. On the contrary, the Tangjiashan
landslide dam, which was artificially breached soon after its formation during the Wenchuan earthquake, has
a failure probability as high as 99.54%. Typhoon Morakot induced the Siaolin landslide dam, which was
breached within one hour after its formation and has a failure probability of 71.09%. Notably, the failure
probability of the earthquake induced cases is reduced if the catchment area in the prediction model is
replaced by the peak flow of the dammed stream for these cases. In contrast, the predicted failure probability
of the heavy rainfall-induced case increases if the high flow rate of the dammed stream is incorporated into
the prediction model. Consequently, it is suggested that the prediction model using the peak flow as causative
factor should be used to evaluate the stability of a landslide dam if the peak flow is available. Together with
an estimation of the impact of an outburst flood from a landslide-dammed lake, the failure probability of
the landslide dam predicted by the proposed logistic regression model could be useful for evaluating the
related risk.
gli, Taoyuan, 32001, Taiwan.
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1. Introduction

After the formation of a landslide dam, the natural lake may be
quickly breached with an outburst flood and debris flow that results
in a catastrophic disaster. Schuster and Costa (1986) reported that
half of landslide dams fail within 10 days based on 63 cases from the
literature. For example, the 25 August 1933 Deixi Earthquake resulted
in the Deixi landslide dam in south-Central China, which was
breached on 7 October and killed at least 2423 people (Li et al.,
1986). It is always a great challenge for hazard mitigation because
proper actions should be performed within a limited time.

Rapid assessment of the landslide-dam stability is one of the crucial
steps for decision-making to reduce the related disasters. Geomorphic
approaches are widely used to correlate the dam, river, impoundment
characteristics and landslide-dam stability (Swanson et al., 1986;
Costa and Schuster, 1988; Casagli and Ermini, 1999; Ermini and
Casagli, 2003; Korup, 2004). Among them, Ermini and Casagli (2003)
suggested the use of the geomorphic index DBI, which combines
three important variables (dam height H, dam volume V and
catchment area A) to evaluate the stability of a landslide dam, where
DBI=log[(H ⋅A)/V]. By incorporating these simplistic geomorphologic
analyses, GIS-based modeling can be used to evaluate the potential
for river blockages, upstream flooding and related hazards of outburst
floods due to the probable sudden failure of the landslide dam (Clerici
and Perego, 2000; Korup, 2005).

Dong et al. (2009a) compiled a Japanese dataset (Tabata et al.,
2002) with complete records of the characteristics of landslide dams
and a worldwide dataset (Ermini and Casagli, 2003) with dam height,
dam volume and catchment area for documented landslide dams.
Based on the Japanese dataset (Tabata inventory) consisting of 43well
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documented landslide dams, Dong et al. (2009a) utilized discriminant
analysis to find out the dominant variables that affect the stability of
a landslide dam and to construct a series of multivariate regression
models. These variables include peak flow (or catchment area), dam
height, width and length, in the order of relative importance. The
resulting high prediction power (88.4% of the 43 training cases were
correctly classified) and high cross-validation accuracy (86%) in their
work demonstrate the robustness of the discriminant models PHWL
(denoted as Model PHWL_Dis herein)

Ds = −2:94 log Pð Þ−4:58 log Hð Þ + 4:17 log Wð Þ + 2:39 log Lð Þ−2:52

ð1Þ

and AHWL (denoted as Model AHWL_Dis herein)

Ds = −2:62 log Að Þ−4:67 log Hð Þ + 4:57 log Wð Þ + 2:67 log Lð Þ + 8:26;

ð2Þ

where Ds is the discriminant score; P, H,W, L, A are the peak flow, dam
height, width, length and catchment area, respectively. To validate the
index-based graphic approach, Dong et al. (2009a) further used the 84
worldwide dataset (training set) to build a model AHV with three
variables (log-transformed catchment area log(A), dam height log(H)
and dam volume log(V)). The discriminant model AHV_Dis is

Ds = −2:13 log Að Þ−4:08 log Hð Þ + 2:94 log Vð Þ + 4:09: ð3Þ

The overall prediction power of the AHV_Dis was 88.1%, while its
cross-validation accuracy was 83.3%. Using Eq. (3), the 37 Japanese
landslide dams (target set) collected by Tabata et al. (2002) were
classified into either stable or unstable. The overall prediction power
was 70.1% forModel AHV_Dis. It appears that their discriminantmodel
AHV_Dis has a better performance than the index-based graphic
approach (which had an overall prediction power 64.9%).

The risk assessment and management may involve (1) estimating
the risk level, (2) judging whether the risk level is acceptable and
(3) exercising appropriate countermeasures to reduce the risk if the
risk level is not acceptable (Dai et al., 2002). Korup (2005) considered
that the risk level of the breach of a landslide dam is a function of
the probability of an outburst flood from the landslide-dammed lake
and the probability of spatial impact by the outburst flood. Hence, a
prompt evaluation for the occurrence chance (probability) of dam
breaching is essential. The logistic regression is a well established
technique that can evaluate the occurrence probability of a cata-
strophic event (Begueria, 2006). The present work utilizes the Tabata
inventory and Ermini–Casagli inventory (Supplementary Table S1 and
S2 in Dong et al., 2009a) to construct the logistic regression models
for predicting the failure probability of landslide dams. This work
also compared the performance of the logistic regression models
with those of the previous DBI index-based graphic model and
discriminant models. The relative importance of relevant variables
was also evaluated. Ten landslide dams formed after recent cata-
strophic earthquakes and heavy rainfall were adopted as examples
for evaluating their failure probability. Finally, the implication and
limitations of the proposed model on risk assessment of a landslide
dam are discussed.

2. Methodology

Logistic regression is a widely used statistical approach (e.g.,
Carrara et al., 1991; Atkinson and Massari, 1998; Chung and Fabbri,
1999; Lee and Min, 2001; Dai and Lee, 2002, 2003; Ohlmacher and
Davis, 2003; Can et al., 2005; Ayalew and Yamagishi, 2005; Chang
et al., 2007a,b; Greco et al., 2007). As a first step, the landslide dams in
the dataset can be categorized into two groups, (1) a stable group and
(2) an unstable group, on the basis of a non-linear “logistic regression
function” of a set of selected variables. The occurrence probability of
landslide dam failure (i.e., the failure probability of the landslide dam)
can then be calculated based on a logistic regression model. Next, the
model performance can be evaluated through the confusion matrix
and relative operating characteristic (ROC) diagram. Finally, the
relative importance of individual variables can be sorted by the jack-
knife technique. Brief descriptions of these methods are as follows.

2.1. Categorization of dataset by logistic regression analysis

Logistic regression is useful when the dependent variable is
categorical (e.g., presence or absence) and the explanatory (indepen-
dent) variables are categorical, numerical, or both (Menard, 2002).
An odds ratio Ps, representing the probability of a landslide dam
remaining stable, is defined as

Ps =
1

1 + e−Ls
; ð4Þ

where Ls is a certain linear combination of the influencing variables as
follows:

Ls = b0 + b1x1 + b2x2 + ::: + bnxn = ln
Ps

1−Ps

� �
: ð5Þ

In Eq. (5), xi (i=1~n) is the independent variable, bi (i=0~n) is
the regression coefficient for the sample data and n is the number of

independent variables. Ls = ln
Ps

1−Ps

� �
is the logarithm of the odds

ratio, called “logit.” The condition Ls=0 corresponds to the condition
that the probability of a landslide-dam failure is 50%. If a dam with
variables xi has LsN0 (or PsN50%), it is classified into the stable group.
Otherwise, it is classified into the unstable group. A failure probability
of the landslide dam is further defined as follows:

Pf = 1−Ps =
e−Ls

1 + e−Ls
: ð6Þ

In this study, we adopted the identical variables P, H,W, L, A (which
are also included in the two discriminant models PHWL_Dis (Eq. (1))
and AHWL_Dis (Eq. (2))) to construct the logistic regression models.
The training dataset comprised 43 well-documented landslide dams in
the Tabata inventory (Supplementary Table S1 in Dong et al., 2009a).
We also used the 84 worldwide dataset (training set; Supplementary
Table S2) to build a logistic regression model with three variables
including log(A), log(H) and log(V), which are identical to the index-
based graphic model (DBI index) and the discriminant model AHV_Dis
(Eq. (3)). With Tabata's inventory (including 37 cases) as the target
set (none in the training set), we compared the prediction performance
of the landslide-dam stability by the index-based graphic model,
discriminant model and logistic regression model. The detailed
information of the inventories, statistics and correlation analysis of
the geomorphologic variables, reliability and the process for selecting
the significant variables to construct the statistical models can be found
in Dong et al. (2009a).

2.2. Performance evaluation of the logistic regression model

The concept of a confusion matrix (Table 1) is often used to
examine the performance of a prediction model. The proportion of
correctly classified observations ((a+d)/N) is calculated to illustrate
the prediction ability of the proposed statistical model where N is the
number of landslide dam cases, a is the true positive and d is the true
negative. Cross-validation can also be used to examine the reliability
and robustness of the proposed model (Carrara, et al., 2008). We
randomly split the dataset (43 cases) into (1) the training set (17
unstable and 5 stable) and (2) the target set (17 unstable and 4 stable).
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Fig. 1. Logit (Ls) distribution (LsN0 stable, Lsb0 unstable) of (a) the Model PHWL_Log,
and (b) the Model AHWL_Log for the stability of 43 landslide dams.

Table 2
Confusion matrix of the logistic regression models.

Model Actual groups Number of
landslide dams

Predicted group
membership

Group 1
(stable)

Group 2
(unstable)

PHWL_Log Group 1 (stable) 9 6 (66.7%) 3 (33.3%)
Group 2 (unstable) 34 2 (5.9%) 32 (94.1%)
Percentage of landslide dams correctly classified:
88.4 (whole dataset; 43 cases) 85.7 (cross-validation)

AHWL_Log Group 1 (stable) 9 6 (66.7%) 3 (33.3%)
Group 2 (unstable) 34 1 (2.9%) 33 (97.1%)
Percentage of landslide dams correctly classified:
90.7 (whole dataset; 43 cases) 77.3 (cross-validation)

Table 1
Confusion matrix. a: true positives; b: false positives (error type I); c: false negative
(error type II); d: true negatives. N (=a+b+c+d) is the total number of data sets.

Predicted Observed

Stable dam Unstable dam

Stable a b
Unstable c d
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By using the target set, we then evaluated the predictive success of the
model built on the training set. The proportion of correctly classified
observations was calculated to illustrate the prediction ability of the
proposed statistical models.

Alternatively, the prediction performance of a predictive model
can be evaluated via the ROC (relative operating characteristic)
diagram. The ROC diagram method has been widely used to measure
the prediction potential of landslide susceptibility models (e.g., Chung
and Fabbri, 2003; Chen et al., 2007; Carrara et al., 2008; Lee et al.,
2008a,b; Dong et al., 2009b). In the ROC diagram, the false alarm rate
(FAR) is on the horizontal axis while the hit rate (HR) is on the vertical
axis. HR is the fraction of positive occurrences of dam failure that is
correctly predicted, while FAR is the fraction of incorrectly predicted
cases that did not occur (Swets, 1988). A larger area under the ROC
Curve (AUC) indicates better model prediction; the index AUC ranges
from 0.5 (for models with no predictive capability) to 1.0 (for models
with perfect predictive power).

2.3. Jack-knife technique

The jack-knife technique (Swan and Sandilands, 1995) can be
utilized to sort the importance of the relevant variables in the logistic
regressionmodel. We eliminate the variables in the logistic regression
model one by one. M sub-models are created if the logistic regression
model has M variables. The greater the prediction ability of the sub-
model is (compared with the original model), the more important the
eliminated variable is. Consequently, the relative importance of each
variable contributing to the landslide-dam stability in the proposed
models can be sorted.

The aforementioned logistic regression analyses were carried out
with the commercial statistical package, SPSS (Statistical Package for
the Social Sciences).

3. Results

3.1. Logistic regression models PHWL_Log and AHWL_Log

Logistic regression models (PHWL_Log and AHWL_Log) with four
variables P (or A), H, W and L were built on the basis of 34 unstable
dams and 9 stable dams as follows:

Ls = −2:55 log Pð Þ−3:64 log Hð Þ + 2:99 log Wð Þ + 2:73 log Lð Þ−3:87

ð7Þ

Ls = −2:22 log Að Þ−3:76 log Hð Þ + 3:17 log Wð Þ + 2:85 log Lð Þ + 5:93

ð8Þ

where P (or A), H,W and L are the peak flow (or catchment area), dam
height, width and length, respectively. If a dam with variables xi
results in LsN0 (or PsN0.5), then it belongs to the stable group;
otherwise, it belongs to the unstable group. Fig. 1 (a) and (b) shows
the classification results for the logistic regression models PTHWL_Log
and ATHWL_Log. For model PTHWL_Log, 6 out of the 9 stable landslide
dams and 32 out of the 34 unstable landslide dams were correctively
classified (Figure 1(a)). For model ATHWL_Log, 6 out of the 9 stable
landslide dams and 33 out of the 34 unstable landslide dams were
correctively classified (Figure 1 (b)). The overall prediction powers
(percentage of landslide dams correctly classified) for models
PHWL_Log (Eq. (7)) and AHWL_Log (Eq. (8)) were 88.4% and 90.7%,
respectively. The cross-validation accuracy of models PHWL_Log and
AHWL_Log was 85.7% and 77.3%, respectively. The confusion matrix
of the logistic regression models are illustrated in Table 2. Fig. 2
shows the ROC curves of the proposed model. The AUC=0.948 and
AUC=0.925 for models PHWL_Log and AHWL_Log, respectively,
indicate that both of the proposed models were able to categorize
the landslide dams into stable and unstable groups with high success
rates.

3.2. Logistic regression model AHV_Log

The84worldwidedataset (the training set; Supplementary Table S2)
was used to build the logistic regression model with three variables



Fig. 2. ROC curves of the proposed logistic regression models.
Fig. 3. ROC curves of Model PHWL_Log and 4 sub-models.

Fig. 4. ROC curves of Model AHWL_Log and 4 sub-models.
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(A, H and V). Model AHV_Log obtained from the logistic regression is
as follows.

Ls = −4:48 log Að Þ−9:31 log Hð Þ + 6:61 log Vð Þ + 6:39: ð9Þ

The overall prediction power (success rate) of AHV_Log was 89.3%.
The cross-validation accuracy was 85.7%. The AUC of the Model
AHV_Log was 0.951. Using Eq. (9), the 37 Japanese landslide dams
in Tabata's inventory (the target set; not in the training set) were
classified as either stable or unstable landslide dams. The overall
prediction power (prediction rate) was 76.9% for model AHV_Log.
Comparing with the overall prediction powers of 70.1% and 64.9%,
respectively, for the discriminant model AHV_Dis and for the index-
based graphic model (DBIb2.75 stable; DBIN3.08 unstable), the
logistic regression model seems to have a better ability to categorize
landslide dams (as stable or unstable).

3.3. Importance of the factors affecting landslide-dam stability

The jack-knife technique was utilized to examine the relative
importance of each variable in the predictive models. We eliminated
one of the four variables one by one and established four logistic
regression sub-models. The ROC curves were derived and the AUCs
were calculated. Fig. 3 shows the ROC curves of model PHWL_Log and
the 4 sub-models. The AUC for the case with the peak flow variable
eliminated was 0.703; it was also the lowest one among all of the 4
sub-models. The result clearly indicates that the peak flow is the most
significant variable in model PHWL_Log. The relative importance of
the variables are peak flow (AUC=0.703), dam height (AUC=0.889),
dam width (AUC=0.908) and dam length (AUC=0.914), in that
order.

For model AHWL_Log, the relative importance of the variables
are catchment area (AUC=0.703), dam height (AUC=0.859), dam
length (AUC=0.878) and damwidth (AUC=0.899), in that order (as
shown in Figure 4).

3.4. Failure probability of landslide dams in Tobata inventory

The failure probability of a landslide dam, Pf, could be derived from
the logit Ls using Eq. (6). Fig. 5 (a) and (b) show the failure probability
of landslide dams in the Tobata inventory as calculated by the logistic
regression models (PHWL_Log and AHWL_Log), respectively. Fig. 5(a)
shows that 94.1% of the 34 stable landslide dams (PfN50%) and 66.7%
of the 9 unstable landslide dams (Pf b 50%) were correctively
classified by model PHWL_Log. For model AHWL_Log, 97.1% of the
34 unstable landslide dams and 66.7% of the 9 stable landslide dams
were correctively classified (Figure 5 (b)). Notably, 31 out of 34
unstable landslide dams (about 90%) had a failure probability greater
than 80% according to model PHWL_Log. For model AHWL_Log, about
85% of unstable landslide dams had a failure probability greater than
80%.

Fig. 6 shows the contour planes for Pf=2%, 10%, 50%, 90% and 98%
as predicted by model AHV_Log (the 84 worldwide dataset was used
as the training set). The three-dimensional plot is for a view angle
parallel to the strike of the contour planes. We calculated the number
of stable and unstable cases of the 37 Japanese landslide dams in
the Tabata inventory (the target set; not in the training set) within
Pf=0–2%, Pf=2–10%, Pf=10–50, Pf=50–90%, Pf=90–98% and

image of Fig.�3
image of Fig.�4
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Fig. 5. Histogram showing the distribution of failure probability (Pf) of the 43 landslide
dams. (a) Model PHWL_Log; (b) Model AHWL_Log.

Fig. 6. Contour planes for 2%, 10%, 50%, 90%, and 98% of failure probability of a landslide
dam predicted by the Model AHV_Log. The stable and unstable landslide dams in
Tabata's inventory (37 target dataset) and the failure probability of Tangjiashan and
Tsao-Ling landslide dam are also shown.
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Fig. 7. A comparison of relative frequencies of stable and unstable landslide dams of the
target data set (37 Japanese cases) and dam failure probabilities (Pf) calculated from the
Model AHV_Log developed from the training data set (84 worldwide cases).
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Pf=98–100%. The results are shown in Fig. 7. Ten unstable dams
and three stable dams fell within the range of failure probability
Pf=98–100%. Eight unstable dams and one stable dam fell within the
range of failure probability Pf=90–98%. It is qualitatively supported
that the logistic regression model is capable of predicting the failure
probability as well as categorizing a landslide dam into the stable or
unstable group.

4. Application to the landslide dams induced by recent
catastrophic events

Landslide dam inventories with more than 250 cases triggered by
the 2008 Wenchuan earthquake were recently published (Cui et al.,
2009; Xu et al., 2009; Yin et al., 2009). However, as is not uncommon,
the geomorphic characteristics of the landslide dams were incom-
pletely documented. Only 19 caseswith damheight, length, width and
dam volume were completely reported (Yin et al., 2009). None of the
inventories include the data for the catchment area at the upstream of
the landslide dams, which is one of the critical characteristics related
to the dam stability (Dong et al., 2009a).

In this work, a digital elevation model derived from the Shuttle
Radar Topographic Mission (SRTM)with a precision of 90 mwas used
to estimate the catchment area of the 19 aforementioned landslide
dams. The locations of these landslide damswere provided by Cui et al.
(2009). Among the 19 cases, only 8 landslide dams were reasonably
located and thus the catchment areas estimated with confidence.

Together with the 8 Wenchuan cases, two Taiwanese landslide
dam cases were also adopted to demonstrate the capability of the
proposed logistic regression model for calculating the failure
probability. The first one is the Tsao-Ling landslide dam formed
during the 1999 Chi-Chi earthquake; it was eventually filled up with
sediments and the dam remains stable (Li et al., 2002; Lee and Lin,
2006). The second one is the Siaolin landslide dam triggered by
the heavy rainfall in 2009 due to Typhoon Morakot; it was rapidly
breached after its formation (Dong et al., submitted). Table 3 lists the
geomorphologic characteristics required for the prediction models.
Data from different sources are sometimes inconsistent. In addition,
some of the dam heights were provided as a range. In all the cases, the
smallest values of the dam height were adopted to evaluate the dam
stability with models AHWL_Log and PHWL_Log and the DBI index.
The input values of the dam geometry are the bold data in Table 3.

The Tsao-Ling landslide dam was categorized as a stable dam. The
failure probability of the Tsao-Ling landslide dam evaluated by model
AHWL_Log was 27.68% (Table 3). On the other hand, the Siaolin and
Tangjiashan landslide dams were classified as unstable. Evaluated by
model AHWL_Log, the failure probability of the naturally breached
Siaolin landslide dam was 81.91%, while the failure probability of the
artificially breached Tangjiashan landslide dam was greater than 99%.
Among the other seven landslide dams triggered by the Wenchuan
earthquake, three dams were categorized in the stable group (failure

image of Fig.�5
image of Fig.�7


Table 3
Geomorphologic parameters and the failure probabilities predicted by logistic regression models of several landslide dams.

Triggering events Landslide dam Geomorphologic parameters Predicted stability and failure probability of landslidedams

P (m3/s) A (106m2) H (m) W (m) L (m) V (106 m3) AHWL_Log: Ls(Pf%) PHWL_Log: Ls(Pf%) DBI (stability)

1999 Chi-Chi Earthqrake Tsao-Ling 162.01 50–1101 50001 6001 1201 0.96(27.68) 1.83(S)
2008 Wenchuan Earthquake Tangjiashan 88.9a 3937.5 80–120 2 8002 6122 20.42 −5.38(99.54) −0.59(64.34) 4.19(U)

82–1243 8003 6003 20.43

82–1244 8034 6114

Kuzhuba-downstream 3952.4 602 2002 3002 0.172 −7.71(99.96) 6.14(U)
604

Shibangou 19.6 602 4502 8002 8.12 0.87(29.53) 1.86(S)
30–753 15.03

Donhekou b1002 24.9 15–252 7002 5002 10.02 1.80(14.19) 2.62(6.79) 1.57(S)
203 12.03

Hongshihe 27.0 402 5002 4002 1.02 −0.15(53.74) 2.91(U/S)
30–503 4.03

Guantan 177.8 602 1202 2002 1.442 −5.92(99.73) 3.87(U)
603 1.23

Xiaogonjian-upstream 369.1 722 1722 1202 1.63 −6.82(99.89) 4.16(U)
62–723

624

Yingxiuwan-Taipingyi
HPS

1907.1 182 3002 2002 1.02 −4.98(99.32) 4.54(U)

2009 Typhoon Morakot Siaolin 29745 354.05 445 15545 7605 13.185 −0.90(71.09) −1.30(78.58) 3.07(U/S)

1Li et al. (2002); 2Yin et al. (2009); 3Xu et al. (2009); 4Cui et al. (2009); 5Dong et al. (submitted).
aEstimated based on a nearby Xiaojiahe landslide dam (catchment area=159.8 km2, flow rate=4 m3/s in May) (Yin et al., 2009).
U: unstable; S: stable; U/S: unclassified.
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probability 12%–46%) and four dams were categorized in the unstable
group (failure probabilityN99%).

5. Discussion

5.1. Comparison of the logistic regressionmodels and discriminantmodels

Table 4 compares the overall prediction power of the logistic
regression models and the discriminant models. It appears the
proposed logistic regression models PHWL_Log (AUC=94.8%) and
AHWL_Log (AUC=92.5%) were able to categorize the landslide dams
into the stable and unstable groups with high success rates. The AUCs
of the logistic regressionmodels were slightly higher than the AUCs of
the discriminant models (see Table 4). The models containing the
peak flow variable (PHWL_Dis and PHWL_Log) were superior to the
models with catchment area instead (AHWL_Dis and AHWL_Log). It
Table 4
Comparison between the performance of the logistic regression models and the
discriminant models (Dong et al., 2009a).

Model Predicted Observed Proportion of correctly
classified observations
(a+d)/N

AUC

Stable Unstable Whole
data set

Cross-validation

PHWL_Log Stable 66.7% 33.3% 88.4% 85.7% 0.948
Unstable 5.9% 94.1%
Significance of the variables contributed to the stability of landslide
dam: PNHNWNL

AHWL_Log Stable 66.7% 33.3% 90.7% 77.3% 0.925
Unstable 2.9% 97.1%
Significance of the variables contributed to the stability of landslide
dam: PNHNLNW

PHWL_Dis Stable 77.8% 22.2% 88.4% 86.0% 0.935
Unstable 8.8% 91.2%
Significance of the variables contributed to the stability of landslide
dam: PNHNWNL

AHWL_Dis Stable 77.8% 22.2% 88.4% 86.0% 0.905
Unstable 8.8% 91.2%
Significance of the variables contributed to the stability of landslide
dam: PNHNWNL
is speculated that the peak flow should have a direct impact on the
stability and erosion of a landslide dam. On the other hand, the
catchment area can only implicitly account for the potential peak flow
that may flow downstream and threaten the landslide-dam stability.
The difference in the predicted failure probability of landslide dams
using different models will be further discussed in Section 5.2.

Notably, the proportion of correctly classified observations ((a+
d)/N) of the proposed logistic regression models derived from cross-
validation is lower than that of the discriminant models. In addition,
the overall prediction power of the logisticmodels derived from cross-
validation is not as good as that of the discriminant models. However,
the error of type II “c” (false negative; model failed to predict the
landslide dam instability) is lower than that of the discriminant
models (Table 4). Begueria (2006) indicated that the senses of false
negatives “c” and false positives “b” (error of types I) with respect to
risk assessment could be significantly different. The logistic regression
analysis has a lower error of type II “c” (5.9% and 2.9%), which indicates
a high chance that the model will identify an unstable landslide
dam (94.1% and 97.1%, in Table 4). It may also imply that the logistic
regression models are conservative in predicting the stability of
landslide dams compared with the discriminant models proposed by
Dong et al. (2009a). For catastrophic hazards induced by the collapse
of landslide dams, the necessity for correctly classifying an unstable
landslide dam may be more crucial than correctly classifying a stable
landslide dam.

Regarding the relative importance of the variables affecting the
stability of landslide dams, the jack-knife technique identified the
peak flow and the catchment area to be the most important ones in
the PHWL_Log and AHWL_Log models, respectively. The dam height
was the secondmost important variable contributing to the landslide-
dam stability in the proposed logistic regression models. The peak
flow, catchment area and dam height are all negative factors
contributing to the stability of landslide dams. On the other hand,
the dam width and dam length are positive factors. In model
PHWL_Log, the dam width is more important than the dam length.
In model PHWL_Log, the importance of the dam length is greater than
that of the damwidth. The significance of the variables contributing to
the stability of landslide dams for various models is listed in Table 4.
The relative importance of variables of landslide-dam stability for the
logistic regression models are almost identical to the ones derived



Table 5
Empirical approach of risk assessment with respect to outburst flooding of a landslide
dam (Cui et al., 2009; Xu et al., 2009; Yin et al., 2009).

Index Grade

Extreme high
risk (EHR)

High risk
(HR)

Medium
risk (MR)

Low risk
(LR)

Dam height (m) N100 50–100 25–50 b25
Water storage capacity
(×106 m3)

100 10–100 1–10 b1

Composition of dam materials aGroup 1 Group 2 Group 3 Group 4

a Group 1: soil and fragments of rock; Group 2: soil and fragments of rock with a few
boulders and blocks; Group 3: boulders and blocks with little soil and rock fragments;
Group 4: boulders and blocks.
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using the standardized canonical discriminant coefficient (SCDC) of
variables in the discriminant models (Dong et al., 2009a); the only
exception is the reverse order of the dam length and dam width for
model AHWL_Log.
5.2. Predicted failure probability using different hydrology factors

As demonstrated in Section 5.1, the models containing the peak
flow variable are superior to the models with catchment area instead.
The peak flow of a stream is dominated by many factors, such as
morphological, hydro-geological and meteorological characteristics.
Obviously, the use of the catchment area in place of peak flow is not
able to fully reflect those influences. In particular, the peak flow of the
dammed stream during the life span of an earthquake-induced
landslide dam will be quite different than a heavy rainfall-induced
one.

The estimated peak flows during the life spans of the Tangjiashan,
Donhekou and Siaolin landslide dams are shown in Table 3. The
estimated peak flow was low (b100 m3/s) for the Wenchuan
earthquake-induced landslide dams, whereas the peak flow of the
heavy rainfall-induced Siaolin cases was relatively large (2974 m3/s).
The failure probability predicted by model PHWL_Log was lower than
that predicted by model AHWL_Log for the earthquake-induced cases.
For example, the failure probability of the earthquake-induced
Tangjiashan landslide dam decreases from 99.54% to 64.34% if
model AHWL_Log is replaced by model PHWL_Log. Contrarily, the
Table 6
Classified risk level of the selected landslide dams.

Triggering events Landslide dam H (m) Vl (106 m3) Dam
material

R
e

1999 Chi-Chi Earthqrake Tsao-Ling 50 401 Group 4 H
2008 Wenchuan Earthquake Tangjiashan 80 2502 Group 3 E

3003

3024

Kuzhuba-downstream 60 23 Group 4 M
24

Shibangou 30 202 Group 3 H
113

Donhekou 15 102 Group 1 M
103

Hongshihe 30 32 Group 3 M
1.23

Guantan 60 52 Group 1 H
103

Xiaogonjian-upstream 62 112 Group 3 H
113

114

Yingxiuwan-
Taipingyi HPS

18 22 – M

2009 Typhoon Morakot Siaolin 44 9.95 Group 1 M

1Lee and Lin (2006); 2Yin et al. (2009); 3Xu et al. (2009); 4Cui et al. (2009); 5Dong et al. (s
EHR: extremely high risk; HR: high risk; MR: medium risk; LR: low risk.
predicted failure probability of the heavy rainfall-induced Siaolin
landslide dam increases from 71.094% to 78.58% if the high flow rate
replaces the catchment area. Hence, it is suggested that model
PHWL_Log should be used to evaluate the stability of a landslide dam
as long as the variable P (peak flow) is available. Nevertheless, it is
often imperative to evaluate the dam stability as soon as possible.
Consequently, model AHWL_Log is still useful in practice because the
peak flow is often unclear right after the formation of a landslide dam.
5.3. Risk assessment of a landslide dam

One of the key issues for decision-making for hazard mitigation is
to estimate the risk related to the landslide dams promptly. Korup
(2005) critically reviewed the problems relating to the complexity for
risk (including hazard and vulnerability) assessment of a landslide
dam. It was suggested that the hazard induced by a dam-break flood is
a function of (1) the probability of the landslide event, (2) the
probability of dam and lake formation given the landslide event,
(3) the probability of an outburst flood from an existing landslide-
dammed lake (time-variant) and (4) the probability of spatial
(downstream) impact due to an outburst flood from a landslide-
dammed lake. Yet, an applicable empirical approach to categorize the
degree of risk by using simple geomorphic parameters is preferred, at
least in the initial period of risk evaluation. For example, the risk level
for the landslide dams induced by the Wenchuan earthquake were
classified into four grades, (1) extremely high risk (EHR), (2) high risk
(HR), (3) medium risk (MR) and (4) low risk (LR), by taking into
account the landslide dam height (H), lake capacity (Vl) and dam
materials (Cui et al., 2009; Xu et al., 2009; Yin et al., 2009). Table 5
shows the matrix for a quick qualitative risk assessment of the
landslide dams induced by the Wenchuan earthquake. The proposed
empirical approach is rather simple and time saving and fits the
requirement for emergency decisions making. However, the influence
of the landslide dam failure and the impact (consequence) of an
outburst flood from a landslide-dammed lake are not evaluated
separately.

Table 6 shows the risk levels of ten landslide dams evaluated by
the empirical approach (Table 5). The evaluated “high risk” of the
Tsao-Ling landslide dam is mainly due to the dam height and large
water storage capacity. Because the failure probability is very low
isk level; based on the
mpirical approach (Table 5)

Status

R Filled up with sediments and the dam remains stable
HR Possible whole collapse can be caused by intensive

rainfall

R The whole stability is high, but can be affected by
the possible failure of Tangjiashan landslide dam

R Low stability for permeability, high susceptibility
for dam collapse

R Dam collapse and overflowing. Collapse can be
caused by upstream landslide dam failure

R Low stability for permeability, high susceptibility
for dam collapsing partially or in whole

R Low stability for permeability, high susceptibility
for dam collapse

R Low stability for permeability, high susceptibility
for dam collapse

R Dammed half of the river. Overflow at low point

R Breached and failed soon after its forming

ubmitted).
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Fig. 8. The sensitivity analysis for the dam height on the failure probability of Tsao-Ling
and Tangjiashan landslide dam using Model AHV_Log.
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according to the proposed logistic regression models, a risk level of
“medium risk” seems more suitable for the Tsao-Ling case. On the
contrary, the catastrophic Siaolin case is classified as “medium risk” by
this empirical approach. It would be more appropriate to classify the
Siaolin case as “high risk” to “extremely high risk” because of its high
failure probability. Together with an estimation of the impact of the
outburst flood from a landslide-dammed lake, the failure probability
of the landslide dam predicted by the proposed logistic regression
model can be useful for evaluating the related risk.

5.4. Limitations of the models

The proposed models for evaluating the stability of landslide dams
do have their limitations. First of all, with a set of databases (such as
landslides), it is possible to develop rigorous susceptibility models
and to generate a susceptibility map. However, these actions do not
guarantee that the predictions will coincide with reality in the field
for general applications (Dai and Lee, 2003). The proposed logistic
regression models, as well as the index–-based graphic approach or
the discriminant models, should always be used with caution for their
applications in regions beyond where the inventories cover.

Secondly, using logistic regression analysis, the failure probability
assigned to any landslide dam is the probability that the dam pertains
to one of two groups, namely (i) stable dams or (ii) unstable dams,
given the set of variables used in the model (Guzzetti et al., 2005).
However, Ps in Eq. (4) is not a probability in a strict sense because the
time-scale over which an event (such as failure of a landslide dam) is
expected to occur is not explicitly given (Atkinson andMassari, 1998).
The failure probability of an existing landslide-dammed lake can
change with increasing lake volume, repeated strong seismic ground
motion, or rapid changes in water level (Korup, 2005). In addition,
outburst floods from upstream natural dams may cause overtopping
and breaching of otherwise stable landslide dams downstream, which
is difficult to quantify in terms of conditional probability (Korup,
2005). Further study to expand the evaluation capability of landslide-
dam failure probability to a spatial-temporal context is needed.

Thirdly, in the Tabata's inventory, the dataset of stable landslide
dam is a smaller dataset (20.1% of the total cases) compared with the
unstable ones (79.9% of the total cases). It should be noted that the
common statistical multivariate regression procedures, such as the
logistic regression, ought to work with groups that are more or less
equal in size (Begueria and Lorente, 1999). In the domain of political
sciences, King and Zeng (2001) reported that ordinary logistic
regression may sharply underestimate probabilities if the number of
presences in the population is tens to thousands of times smaller than
the number of absences. It is possible that the proposed models could
over-predict the failure probability of landslide dams. Using rare
event logistic regression, which has proven successful in landslide
susceptibility analysis (Van Den Eeckhaut et al., 2006), may be one of
the possible solutions. The influence of sampling on the evaluation of
the stability of landslide dams using the logistic regression remains
to be addressed in the future.

Finally, the accuracy of the geomorphic variables to be input into
the model is always problematic. For example, it is difficult to
determine the correct dam height H in the proposed models for the
cases shown in Table 3. Fig. 8 shows the sensitivity of the failure
probability due to the dam height. The horizontal axis is a normalized
dam height HN, which is defined as

HN =
H−Hmin

Hmax−Hmin
ð10Þ

where the Hmax and Hmin are the reported maximum and minimum
dam heights, respectively. For the Tangjiashan landslide dam, the
reported height is within 82–124 m. The failure probability (N99%)
will not change too much if the dam height increases from 82 m to
124 m. In the case of the Tsao-Ling landslide dam, the dam height
is 50 m on the upstream side and 110 m on the downstream side.
According to the logistic regression model AHWL_Log, the failure
probability of Tsao-Ling landslide dam will significantly increase
from 27.68% to 58.11% if the dam height increases from 50 m to
110 m. Because the geometry of landslide dams is often complex,
the geomorphic approach should be used with caution. For model
development and prediction, the definition of dam geometry deserves
some deliberation. For the Siaolin landslide dam, the adopted dam
height of 44 mwas the deposition depth at the breaching point (Dong
et al., submitted). It would be proper to define the dam height as the
maximum depth of lake, which is better related to the dam height at
its breaching point.

The aforementioned limitations all lead to an identical key issue:
the incompleteness and uncertainty of the landslide dam dataset
leads to uncertainty in the classification of landslide dams (into stable
and unstable groups) using geomorphic approaches (Korup, 2004).
Despite the limitations, the proposed models are still useful for
quantitative evaluation of the failure probability of landslide dams in a
logical approach. These models may be valuable for decision-makers
to choose a proper countermeasure based on risk level. It is expected
that worldwide records of landslide dams and complete geomorphic
parameters will be accumulated quickly after new techniques, such
as high resolution airborne LiDAR, become widely used. Additionally,
more data availability and GIS-based geospatial extrapolation capability
should expand the scope for future research on the formulation of
regional susceptibility models for landslide-driven stream blockages
based on catchment parameters.
6. Conclusions

Based on 43 Japanese cases as the training dataset, logistic
regression models for the quantitative prediction of landslide-dam
stability were presented. The proposed models PHWL_Log and
AHWL_Log were able to categorize the landslide dams into stable
and unstable groups with high success rates. Model PHWL_Log
(AUC=94.8%) was slightly superior to model AHWL_Log
(AUC=92.5%). Yet, model AHWL_Log may be more useful in practice
because peak flow information is not always available in the early
stage after dam formation.

The log-transformed peak flows (or alternatively, the catchment
area) are identified as the most important geomorphic variables
influencing the stability of a landslide dam. The log-transformed dam
height, with a negative contribution to the stability of a landslide dam,
is the second most significant variable. The log-transformed dam
width and length have a similar positive effect on a dam's stability;
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their relative importance found in this study is in agreement with the
results derived from the discriminant analysis.

Compared with the discriminant models, the logistic regression
models have a slightly better ability to categorize the landslide
dams (into stable and unstable groups). Furthermore, the lower false
negative (error type II; model fails to predict the landslide dam
instability) predicted by the logistic regression models reveals the
conservative nature of the model in categorizing a landslide dam into
the unstable group.

In addition to the classification of landslide dams into the stable
and unstable groups, the failure probability can also be evaluated
based on the proposed logistic regression models. The present work
took ten case histories of landslide dams (two in Taiwan and eight in
China) to demonstrate the capability for the evaluation of failure
probability by the logistic regression models. The stable Tsao-Ling
landslide dam, formed after the 1999 Chi-Chi earthquake, had a failure
probability 27.68% as predicted by model AHWL_Log. On the other
hand, the artificially breached Tangjiashan landslide dam, formed
after the 2008 Wenchuan earthquake, had a failure probability as
high as 99.53%. Typhoon Morakot induced the Siaolin landslide dam,
which was breached within one hour after its formation had a failure
probability of 71.09%. In the cases presented, the failure probability
of an earthquake-induced landslide dam decreased if the prediction
model AHWL_Log was replaced by model PHWL_Log. In contrast, the
failure probability of a heavy rainfall-induced case predicted bymodel
PHWL_Log is higher than that by AHWL_Log because a high flow rate
is incorporated into the prediction model (PHWL_Log).

Finally, the empirical approach for classifying the risk level of
landslide dams based on the Wenchuan experience was tested on
some cases in Taiwan. According to this empirical approach, the stable
Tsao-Ling landslide dam was categorized as high risk level, whereas
the catastrophic Siaolin case was classified as medium risk level. It
would be more suitable if both the failure probability and the impact
due to the outburst flood from the landslide-dammed lake could
be considered separately for classifying the risk level of a landslide
dam. Therefore, a simple model describing the failure probability
of landslide dams, such as the proposed logistic regression model,
is necessary for classifying the risk level related to a landslide dam
breach.

In summary, the proposed models can be used for evaluating the
risk associated with outburst floods from landslide-dammed lakes.
These models can be used as an evaluation tool for decision-making
concerning hazard mitigation actions, especially when the allowable
time is limited.
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