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The relationships between the Hurst exponent H and the power-law scaling exponent B in a new
modification of sandpile models, i.e. the long-range connective sandpile (LRCS) models, exhibit a strong
dependence upon the system size L. As L decreases, the LRCS model can demonstrate a transition from
the negative to positive correlations between H- and B-values. While the negative and null correlations
are associated with the fractional Gaussian noise and generalized Cauchy processes, respectively, the
regime with the positive correlation between the Hurst and power-law scaling exponents may suggest an
unknown, interesting class of the stochastic processes.

© 2010 Elsevier B.V. All rights reserved.
Sandpile dynamics and self-organized criticality (SOC) are
known to be exhibited in many natural and social phenomena
including earthquakes, forest fires, rainfalls, landscapes, drainage
networks, stock prices, traffic jams, and so on. Since the original
nearest-neighboring sandpile model was introduced by Bak et al.
[1,2], various numerical and analytical studies of modified sandpile
models have been a considerable subject of researches, e.g. [3–
11]. Among them, the annealed random-neighbor sandpile models
where an avalanche can propagate within the system were first
(perhaps) proposed by Christensen and Olami [4] and then exten-
sively studied on a long-range connected (small-world) network
by, for example, de Arcangelis and Herrmann [7], Lahtinen et al.
[9], and Chen et al. [10,11].

We have previously proposed a long-range connective sandpile
(LRCS) model by introducing randomly remote connections be-
tween two separated cells [10–13]. For a square lattice of L by
L cells, we randomly throw sands, one at a time, onto the grid. In
the original Bak–Tang–Wiesenfeld (BTW) sandpile model, once the
total amount of the accumulated sands on a single cell reaches the
threshold amount of four, they will be redistributed to the four ad-
jacent cells (the nearest neighbors) or lost off the edge of the grid.
Our modified LRCS model differs from the BTW model in view
of releasing toppled grains to four nearest neighboring cells. The
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modified rule of randomly internal connections is very similar to
the implementation of Watts and Strogatz [14]. For any particular
cell, when the accumulated grains exceed the threshold and redis-
tribution occurs, one of the original nearest neighbor connections
confronts a chance with the long-range connective probability Pc of
redirecting to a randomly chosen, distant cell and so the original
connection is replaced by a randomly chosen mesh that may be
far from the toppling cell. For a scheme of the distribution pro-
cess of the LRCS model please refer to Fig. 1. We have furthermore
assumed that Pc depends strongly on topographic change induced
by the last event [11–13]. Consider that topographic height of the
sandpile x at the iteration step t is Z t(x). At the next iteration
step t + 1, due to the throw of single grain on the grid, it changes
from Z t(x) to Z t+1(x). Therefore, total change in the topographic
height of the sandpile is �Z(t + 1) = ∑

xl
|Zt+1(xl) − Zt(xl)|. We

then define Pc(t + 1) = [�Z(t + 1)/αL2]3. The meaning for the
coefficient α is basically like the normalization constant, which
makes the value of the connective probability Pc range between
0 and 1. The simulation throughout this study was performed in
the “stop-and-go” mode. The LRCS model after a large avalanche
can thus evoke a high value of connective probability Pc, mo-
tivated by that a more active earthquake fault system will have
higher probability to establish long-range connection due to the
fault activity, the change in pore fluid pressure or the dynamic
triggering of seismic waves. By using such self-adapted probability
threshold Pc of remote connection, the self-adapted LRCS model
demonstrates a state of intermittent criticality [15–17], in which the
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Fig. 1. Flowchart of the LRCS model illustrating the criterion about random distribution to remote site of toppling sand.

Fig. 2. Simulation for a square lattice of 150 by 150 cells. Blue line represents the dynamic variable 〈Z〉(t) of the average topographic height of the LRCS model. Green and red
lines are the Hurst exponent H of avalanche sizes and the power-law exponent B of frequency-size distribution, respectively. Error bars show the 95% confidence intervals.
Also shown are the time occurrences of avalanches with sizes >3162 (black bars). (For interpretation of colors in this figure, the reader is referred to the web version of this
Letter.)
sandpile quasi-periodically approaches and retreats from the criti-
cal state.

In the LRCS model with self-adapted Pc, the dynamic vari-
able of the spatially averaged amount of grains on board 〈Z〉(t)
(= (

∑L2

i=1 Zi(t))/L2, blue lines in Figs. 2 and 3) is often punctuated
towards smaller values by large events (black bars in Figs. 2 and 3).
The large fluctuation in 〈Z〉(t) is an important feature mimicking
the intermittent criticality [15–20]. Large avalanches are then fol-
lowed by a period of quiescence and a new approach back toward
the critical state (Fig. 2) [11–13]. Such process is similar to the dy-
namical process of the earthquake fault system which repeats by
reloading energy and rebuilding correlation lengths towards crit-
icality and the next great event [18–20,33,34]. For more details
about the LRCS model, we refer the readers to our previous papers
[11–13].

In this Letter we investigate the temporal variations in the
power-law exponent B of the frequency-size distributions and in
the Hurst exponent H of avalanche sizes for various system sizes
L of the LRCS models. To trace variations in B and H with respect
to time the sliding window technique was used. We selected 500
events for every time window to calculate Bs and Hs, and then
shifted 50 events to calculate the successive B- and H-values of
the next window. For the calculation of B , we applied the data
binning technique proposed by Christensen and Moloney [21] to
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Fig. 3. Simulation for a square lattice of 50 by 50 cells. Blue line represents the dynamic variable 〈Z〉(t) of the average topographic height of the LRCS model. Green and red
lines are the Hurst exponent H of avalanche sizes and the power-law exponent B of frequency-size distribution, respectively. Error bars show the 95% confidence intervals.
Also shown are the time occurrences of avalanches with sizes > 1000 (black bars). (For interpretation of colors in this figure, the reader is referred to the web version of this
Letter.)
reduce the noise effect of large avalanches, i.e. the effect of finite
statistics, and then adopted the weighted least-square regression
to fit the frequency-size distribution. As for the calculation of H ,
a brief summary of the R/S analysis is given below. The R/S anal-
ysis utilizes two factors: one is the range R , which is the difference
between maximum and minimum amounts of accumulated de-
parture of time series from the mean over a time span τ , and
the other one the standard deviation S over that time span. The
rescaled range is defined as the ratio of R and S , i.e. R/S . Analyz-
ing a variety of time series of natural phenomena, the avalanche
size for example, it has been concluded that the ratio R/S is very
well described by the empirical relation (R/S)(τ ) = (τ/2)H , where
H is the Hurst exponent. For the independent random process,
with no correlations among samples, H = 0.5. The observational
time series is persistent for H > 0.5 whereas the sequence shows
the anti-persistent behavior for H < 0.5. The concepts of persis-
tent and anti-persistent memories in time are well defined for the
non-linear processes [22].

Two examples of the LRCS models with the grid sizes of 150
by 150 and 50 by 50 are given in Figs. 2 and 3, respectively,
demonstrating the temporal variations in the B (red lines) and H
(green lines) values. Error bars show the 95% confidence intervals.
We had previously found that, for large grid sizes of sandpiles
(L > 100), the change in H has fluctuation in the opposite sense
to the variation in B (Fig. 2) [13]. While the B-value usually in-
creases following a large avalanche, the H-value usually decreases.
Larger B means more small events whose superposition results
in a higher-frequency noise in terms of the sandpile topography,
hence smaller H (personal communication with the reviewer). The
H-value then increases prior to the next large avalanche and the
B-value decreases. Comparing B with H in Fig. 2, we could find a
strikingly negative correlation between two exponents of B and H .
Here in this Letter, interestingly, the negative correlation is trans-
ferred into a positive correlation (Fig. 3) when simulations are
performed over smaller grid sizes of sandpile systems (L < 100).
Systematic simulations over various dimensions L of sandpile mod-
els from 30 to 200 had been conducted and the result on the
relationships between B and H is shown in Fig. 4. The scaling ex-
ponent B was initially calculated with all binning points from the
frequency-size distribution (red line in Fig. 4). Taking the potential
finite-size effect into account, we also calculated the B-value from
the frequency-size distribution without some tail binning points
for those simulations on smaller grid sizes of sandpiles. We only
fitted the frequency-size distribution within the size range be-
tween 1 and ∼1000 for those small L sandpiles. This turns out
to display a clearer positive correlation between B and H (blue
line in Fig. 4). Another widely used correction on the finite-size
effect evokes the addition of a correction factor in a form like
exp(−s/sc) (please refer to Ref. [21]) as fitting the frequency-size
distribution. We have furthermore fitted our data with that kind of
correction factors in three sandpiles with L = 50,100 and 150, re-
spectively. The black stars in Fig. 4 indicate that the early strategy
for eliminating the finite-size effect works quite well and confirm
the observed transition in the B–H correlation.

Since the system-size dependence could be revealed by the mo-
ment analysis of sanpile models we furthermore conduct the first
moment calculation of avalanche sizes for various dimensions L
of the LRCS models. Let P (s) denote the distribution function of
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Fig. 4. Correlation coefficients between B and H as a function of system sizes L for the LRCS models. One can clearly see a transition from positive correlations to negative
correlations as L increases. For the explanation please refer to the text. (For interpretation of colors in this figure, the reader is referred to the web version of this Letter.)
Fig. 5. Scaling relation between the first moment 〈s〉 of avalanche size distribution
and the system size L for the LRCS models.

avalanche sizes s. We define the first moment of avalanche size
distribution on a lattice of size L as 〈s〉L = ∫

sP (s)ds. In Fig. 5 we
show the results obtained from the first moment calculation of the
distribution P (s) for the LRCS models. The LRCS models exhibit a
striking scaling with the linear system size L of the first moment
of avalanche sizes as 〈s〉 ∝ log(L). Such a scaling is consistent with
the scaling relation obtained by Majumdar and Dhar (Eq. (5.9) in
[23]) if the average avalanche size 〈s〉 is proportional to the aver-
age number of successful remote rewirings in the LRCS model.

The important implication with the senses of earthquake statis-
tics and stochastic processes could be drawn from the present
study. To seismologists the negative correlation between two scal-
ing exponents of B and H is fundamentally important for under-
standing earthquake statistics and rupturing processes, e.g. [24,25],
and has also been suggested in other conceptual models of earth-
quake fault systems, e.g. [26]. For instance, a self-affine asperity
model proposed by Hallgass et al. [26] exhibits the dependence
of the scaling exponent in the frequency-size distribution, i.e. the
Gutenberg–Richter law, on the roughness of fault geometry which
is controlled by the Hurst exponent in the fractional Brownian
fault profiles. In their numerical simulations (Fig. 4 in [26]) the ob-
served negative correlation between those two scaling exponents is
attributed to the self-affine nature of the considered fault ensem-
bles. It is worth to mention that, based on the self-affine traces
of fractional Brownian motion, Voss [27] has presented a relation
of fractal dimension D and Hurst exponent H , i.e. D = 2 − H .
Notice that the scaling exponent B of the frequency-size distri-
bution shares the geometric meaning of fractal dimension [28,29].
The sandpile models have since its invention represented a con-
ceptual paradigm of self-organized earthquake fault systems [30].
Therefore, while we cannot find such a negative correlation in the
original BTW sandpile models [13], our LRCS models in the sense
of the negative correlation between B and H seem consistent with
past studies of earthquake fault systems [25,26]. The challenge of
our present study is then to understand how a negative correla-
tion between B and H is transferred into a positive correlation as
the system size L decreases (Fig. 4). Investigating this transition is
sort of beyond the scope of the present Letter. We will postpone
this to a future work.

Stochastic processes are characterized by their auto-correlation
function. Mathematically speaking, while the negative correla-
tion between the fractal dimension and the Hurst exponent
could be derived in the process of fractional Brownian motion
(fBm)/fractional Gaussian noise (fGn), e.g. [27], the independence
upon B of H was recently established in the generalized Cauchy
(gC) process [31,32]. The fGn (the derivative of fBm) is a tradi-
tional stationary, self-affine stochastic process with the correlation
function C(τ ) = 1

2 (|τ + 1|2H − 2|τ |2H + |τ − 1|2H ), where H is a
self-affinity index (the Hurst exponent) and τ is the lag. On the
hand, the gC process is given by a correlation function with the
form C(τ ) = (1 + |τ |α)−β/α . Here α and β are two parameters re-
lated to the fractal dimension and Hurst exponent, respectively,
with the relations of α = 4 − 2D and β = 2 − 2H . The gC class
provides flexible power-law correlations and generalizes stochas-
tic models recently discussed in geostatistics, hydrology, network
traffics, physics and time series analysis [31,32]. In this context
of stochastic processes, the regime we discovered with the posi-
tive correlation between the fractal dimension and Hurst exponent
may then suggest an unknown, interesting class of the stochastic
processes.

To give a final remark, in terminology, the LRCS model proposed
here could be called the quarterly self-adaptive random-neighbor
BTW model. In terms of quarterly that means only one among four
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nearest-neighbor connections was removed and redirected, and in
terms of self-adaptive that means the long-range connective prob-
ability Pc was recalculated according to the topographic change
induced by the last event. Notice that, although other random-
neighbor versions of sandpile models have been proposed during
last two decades, e.g. [3–9], none of them was self-adaptive in the
sense of random connection probability. We have realized [11–13]
that self-adapted Pc plays a crucial role to the intermittency in the
LRCS model.
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