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Abstract – Analogous to crustal earthquakes in natural fault systems, we here consider the
dynasty collapses as extreme events in human society. Duration data of ancient Chinese and
Egyptian dynasties provides a good chance of exploring the collective behavior of the so-called
social atoms. By means of the rank-ordering statistics, we demonstrate that the duration data
of those ancient dynasties could be described with good accuracy by the Weibull distribution. It
is thus amazing that the distribution of time to failure of human society, i.e. the disorder of a
historical dynasty, follows the widely accepted Weibull process as natural material fails.

Copyright c© EPLA, 2012

Introduction. – Physicists have long tried to apply
their skills to fields outside of physics and, over the
last few decades, the interdisciplinary fields of research
including Sociophysics and Econophysics have been
thrivingly grown (e.g., [1–6]). Both the Sociophysics
and Econophysics are intended as the interdisciplinary
research fields applying theories and methods mainly
developed by statistical physicists to solve problems
in society and economics. One of the landmarks in
scientific philosophy obtained from numerical simulations
in these interdisciplinary fields is that plain macroscopic
behavior could emerge from the complicated micro-
scopic interactions between a vast amount of agents
(e.g., [3,5,7]). Together with numerical simulations, the
techniques based on observations of data mining and
pattern recognition could help explain the underlying
process behind the data and thus gain insight into the
nature of investigated phenomena. For example, the
statistics of extreme events has been important to focus
on the study of complex systems (e.g., [4,8,9]). Extreme
stock market fluctuations often result in large financial
losses; earthquakes and floods can kill thousands of
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people; and global terrorism is strongly linked to political
extremism.
Statistical distributions of extreme events in the stock

market and various natural systems have been pervasively
investigated for several decades (e.g., [8–14]), whereas
the studies of political/social extreme events are rarely
presented in the literature (e.g., [15]). The rarity for
the study of extreme events in Sociophysics might be
due to the ambiguity in the definition of social extreme
events [16,17], together with inaccessibility of historical
data in the society of human beings. Helbing et al.
proposed disasters as extreme events in the sense of the
amounts of victims and economic losses [16]. Thus, the
collapse of an existed dynasty is undoubtedly a typical
example of extreme events in Sociophysics. It therefore
seems interesting and fundamentally important to analyze
the historical data of dynasties by means of the sophisti-
cated statistics of extreme events (e.g., [4,8,18]). Waldrop
started his book with several thoughtful questions [1]. One
of them is “Why did the Soviet Union’s forty-year hege-
mony over Eastern Europe collapse within a few months in
1989? And why did the Soviet Union itself come apart less
than two years later? . . .Was there some global dynamic
at work that transcends individual personalities?” Many
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Fig. 1: (Colour on-line) A simplified chronological table for ancient Chinese history, showing clearly Han Dynasty, Tang Dynasty,
Song Dynasty and Qing Dynasty. Duration data for each dynasties are (1) Western Han: 231 years; (2) Northern Wei: 148
years; (3) Eastern Wei: 16 years; (4) Northern Qi: 27 years; (5) Yuan: 107 years; (6) Ming: 276 years; (7) Eastern Han: 195 years;
(8) Western Wei: 22 years; (9) Northern Zhou: 24 years; (A) Sui: 37 years; (B) Tang: 289 years; (C) Later Liang: 16 years;
(D) Later Tang: 13 years; (E) Later Jin: 10 years; (F) Later Han: 3 years; (G) Later Zhou: 8 years; (H) Northern Song: 167
years; (I) Southern Song: 152 years; (J) Qing: 295 years; (K) Wei: 45 years; (L) Western Jin: 51 years; (M) Eastern Jin:
103 years; (N) Song (Northern Dynasties): 59 years; (O) Qi (Northern Dynasties): 23 years; (P) Liang (Northern Dynasties):
55 years; (Q) Chen (Northern Dynasties): 32 years; (R) Liao: 209 years; (S) Shu: 42 years; (T) Western Xia: 195 years; (U)
Wu: 58 years; (V) Jin: 119 years.

dynasties, including the well-known Han Dynasty, Tang
Dynasty and Song Dynasty, had been established and then
collapsed in the ancient Chinese history (fig. 1). Together
with information on Egyptian history, the duration data
of those dynasties provides a possible approach to address
such an absorbing question proposed by Waldrop. Anal-
ogous to crustal earthquakes in natural fault systems, we
here consider the dynasty collapses as big shocks (extreme
events) in human society. The duration of a dynasty then
represents the inter-event time of two successive extreme
events. To the pattern of the chronological data in the
history of human being, we are highly interested in the
statistical distribution of inter-event times of historical
dynasty collapses and its underlying process. In this
paper, by means of rank-ordering statistics, we demon-
strate that the duration data of those ancient dynasties in
the China and Egypt chronologies could be described with
good accuracy by the Weibull distribution. Recently such
distribution was used to fit the probability density func-
tion of intertrade times between consecutive stock trades
of thirty companies representing eight sectors of the U.S.
economy over a period of 4 years [19]. Romero et al. [20]
found that the normalized prices of both Babylon and
England agricultural commodities are characterized by
stretched exponential distributions (similar to Weibull),
and exhibit persistent correlations of a power-law type
over long periods of up to several centuries, in contrast to
contemporary markets. Since the exponential distribution
is a special case of the Weibull distribution we have in this
paper adopted a more general Weibull distribution, that
takes on a wide variety of shapes ranging from exponential
to bell-shaped, to describe those historical data. Another
appeal for adopting the Weibull distribution is that the

Weibull distribution is widely used in the time-to-failure
statistics.

Data and method. – We focus on ancient Chinese
and Egyptian chronologies in this paper because both
had most distinctly political structure of a unified govern-
ment/authority. 221 BC is accepted to be the year when
China became unified under a large empire ruled by the
Emperor Zheng Ying (http://en.wikipedia.org/wiki/
History of China). Subsequent dynasties in ancient
Chinese history developed bureaucratic systems that en-
abled the emperor of China to control the large territory.
Similarly, in the ancient Egypt, the need to manage
the waters of the Nile River led to the creation of the
first political organization in the world and the year for
unification of Egypt could be probably placed in about
3000 BC (http://en.wikipedia.org/wiki/History
of Egypt). The last dynasty in China was the Qing
dynasty in 1911 AD while the Ptolemaic dynasty in 30
BC was the last for Egypt. We thus analyzed sequences
of 31 and 28 major dynasties in ancient Chinese and
Egyptian chronologies, respectively.
The rank-ordering technique provides a robust method

for retrieving the nature of the underlying distribution
of extreme events, even from samples of few observa-
tions [8,21]. It offers a better adaptability to analyze the
tail of a distribution of extreme events and thus repre-
sents a conservative perspective on the rarely extreme
events of a population [8]. Rank-ordering statistics is
initially introduced in linguistics [22] and then widely
used in statistics [18]. Using the rank-ordering statistics,
Bouchaud et al. [23] studied the Levy-like tails of return
distributions of financial time series and their associated
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Fig. 2: (Colour on-line) Rank-ordering analysis for Chinese
chronology.

large deviations. Mantegna et al. [24] had analyzed the
coding and noncoding regions of DNA sequences by the
rank-order analysis. Also, Luongo and Mazzarella [25] ap-
plied the rank-ordering statistics to investigate the time-
scale invariance of the eruptive activity of Mt. Vesuvius.
We refer readers to those papers [8, 18, 21–25], together
with references therein, for the generality and usefulness of
rank-ordering statistics. Recently, the Zipf rank approach
was used to predict the per capita gross domestic product
in 30 years of developing and developed EU countries [26],
and to reveal power laws in bankruptcy data [27] and
financial accounting ratios [28].
The rank-ordering statistic is defined by ranking the

duration data Ti in decreasing order (T1 � T2 � . . .� Tn)
and then analyzing Ti against rank i. The probability
density function (PDF) of the ith rank, denoted by
Φi,n(x), is

Φi,n (x) =Ci,n (F (x))
n−i
(1−F (x))

i−1
f (x) , (1)

where Ci,n = (n− i+1)(
n

i ). F (x) and f(x) are the distri-
bution function and probability density function of the
random variable x of interest (for instance, the duration
Ti in our question). Let us consider f(x) as the Weibull
distribution with two parameters C and m,

f (x) =Cmxm−1e−Cx
m

. (2)

Then the mode Mi,n of the PDF Φi,n(x) is the most
probable value of the random variable x. By substituting
(2) into (1) and differentiating Φi,n(x) with respect to x,
an implicit relationship for Mi,n can be obtained as the
following:

(n− i)− (i− 1)F (Mi,n) / (1−F (Mi,n))− (m− 1)/

CMi,n+mM
m−1
i,n = 0. (3)

Fig. 3: (Colour on-line) Rank-ordering analysis for Egyptian
chronology.

Provided some prescribed confidence level, the confidence
interval around the mode can be also derived from Φi,n(x).
Given the Weibull distribution with, say, the maximum
likelihood estimates of two parameters C and m, we
thus calculate the confidence intervals, i.e. (C±, m±),
for the two Weibull parameters. Then we can obtain
two Weibull distribution curves with these two sets of
parameters, i.e. (C+, m+) and (C−, m−). The two curves
represent confidence interval of cumulative number for
specific dynasty duration Ti.

Results. – The results of the rank-ordering analysis
applied to the dynasty duration data of the Chinese
chronology are shown in fig. 2 and those for the Egyptian
one in fig. 3. Each plot represents the cumulative number
of dynasties as a function of duration T in years, i.e. the
number of dynasties with the duration equal to or smaller
than T .
The Weibull parameters (C, m) were estimated by

means of the maximum likelihood method [29]. For the
Chinese dynasty series we obtained (1.030× 10−2, 0.999),
while for the Egyptian one we obtained (8.828× 10−4,
1.423). The plots show also that both the distributions fall
within the 90% confidence intervals, indicating that the
Weibull distribution is a good model for the dynasty series.
In order to verify whether the results are not influenced
by possible errors in the determination of the duration of
a dynasty, we added 10% random noise to the dynasty
duration data and calculated the Weibull parameters.
The mean values of the shape parameter m for Chinese
and Egyptian datasets over 500 random realizations are
0.998 and 1.419, respectively, with standard deviations of
0.011 and 0.026, respectively. Therefore, the results are
not influenced by possible bias in the determination of the
duration of the dynasty.
In order to increase the sample size and estimate

the Weibull parameters more accurately, we merged the
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Fig. 4: (Colour on-line) Rank-ordering analysis for merged
Chinese and Egyptian chronologies.

Chinese and Egyptian datasets. But before merging them,
we verified their statistical similarity using methods, which
are independent of rank-ordering statistics. Furthermore,
both raw datasets without ranking are examined. We
applied the two-sample t-test to verify whether the means
are significantly equal. The obtained p-value is 0.19, indi-
cating the two means are equal with a confidence level
of at least 95%. The two-sample F -test could be also
applied to compare the variances of the two datasets. The
obtained p-value of 0.74 indicates that the variances of
the two datasets are equal with a confidence level of at
least 95%. Both hypothesis tests indicate that the Chinese
and Egyptian datasets are highly likely resulted from the
same population distributed with the same mean and vari-
ance. Therefore, we can conclude that the Chinese and
Egyptian datasets are drawn from the same population.
We can furthermore consider the one-way analysis of vari-
ance (ANOVA) to study if those datasets of China, Egypt
and the hybrid one are from the same population. Because
these three sets have different sample sizes and the mini-
mum one is 28, we randomly select 25 samples from each of
them to relieve sample size effects for analysis. A thousand
of trials are then considered and the calculated p-value is
0.35± 0.28, indicating that the null hypothesis that three
datasets are from the same population cannot be rejected.
Note that the population used in the above tests is a
normal distribution. Since the hypothesis tests and rank-
ordering statistics are used to analyze different forms of
datasets (ranked or not), one can still expect to reach
the conclusion that two sets of ranked data are collected
from same population but different from the normal distri-
bution. Therefore, it is reasonably that we can group
Chinese and Egyptian datasets to increase the sample size
for our study. Figure 4 shows the results of the Weibull
fitting for the merged (hybrid) dataset with (C, m) =
(4.177× 10−3, 1.150) along with a 90% confidence band.

In order to check if the Chinese, Egyptian and hybrid
dynasty chronologies are significantly different from those
randomly generated based on a normal distribution, we
applied the ANOVA test again and we generated one
thousand of Gaussian random realizations; the p-values of
the three tests are 0.06± 0.12, 0.00± 0.00 and 0.01± 0.05,
respectively, which indicate that the three datasets are not
randomly generated with a confidence level of at least 90%.
We can also calculate R-squared values of the prediction

from the fitted model against three datasets to quantita-
tively assess the extent that the variability of the dataset
to be explained by the Weibull distribution. For the real
duration data of Chinese (fig. 2), Egyptian (fig. 3) and
hybrid chronologies (fig. 4), the R-square values are 0.97,
0.95 and 0.98, respectively. These R-square values suggest
that the variability of those three datasets can be well
explained by the Weibull distribution.

Long-range connective sandpile model for the

dynasty collapse. – It is definitely not easy to model
the disorder of human society at this moment in time.
Interestingly, though, we would here like to propose a very
intuitive prototype to be a working model for the dynasty
collapse. The sandpile model has been the paradigm of
self-organized complex systems, even including the evolu-
tion of biological life [30]. The sandpile model can be used
for modeling society. Each individual group of society can
suffer a certain social/emotional stress, which is described
by adding a certain amount of sand grains to each cell
of the sandpile. Once the total amount of the accumu-
lated sand grains within a single cell reaches the thresh-
old, they will be redistributed to four nearest-neighboring
cells and could thus induce a chain of topplings, which is
called an avalanche event. In such model, the social event
can be assimilated to the avalanche event in the sandpile
and the dynasty collapse with the system-wide avalanche
event. However, different from the original Bak-Tang-
Wiesenfeld–type (BTW) sandpile model [30], we here
utilize a long-range transfer of redistributing grains [31–34]
in order to model the long-range transfer of stress among
the separated social groups due to information/message
delivery. Such kind of transfer is not limited to the nearest-
neighboring transfer of stress (disorder) in the BTW sand-
pile model. The so-called long-range connective sandpile
(LRCS) model [31–34] can thus take into account such
long-range transfer of stress/disorder. Consider that the
unfavorable news, say disorder somewhere in a human
society, could cause upsets in people’s mind at faraway
places. Emotional stress is thus of long-range influence and
need not be the nearest-neighboring one.
For a square lattice of L-by-L cells, we randomly throw

sands, one at a time, onto the grid. In the original
BTW sandpile model [30], once the total amount of the
accumulated sands on a single cell reaches the threshold
amount of four, they will be redistributed to the four
adjacent cells (the nearest neighbors) or lost off the
edge of the grid. The LRCS model [31–34] differs from
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Fig. 5: (Colour on-line) Rank-ordering analysis for the inter-
event time distribution of system-wide events in the LRCS
model.

the BTW model in view of releasing toppled grains
to four nearest-neighboring cells. The modified rule of
randomly internal connections is very similar to the
implementation of Watts and Strogatz [35]. For any
particular cell, when the accumulated grains exceed the
threshold and redistribution occurs, one of the original
nearest-neighbor connections confronts a chance with
the long-range connective probability Pc of redirecting
to a randomly chosen, distant cell and so the original
connection is replaced by a randomly chosen mesh that
may be far from the toppling cell. We can assume that the
degree of long-range influence depends in an adapted way
on the size of last disorder event [31–34], which means a
large perturbative event can cause a high degree of long-
range influence. By using such self-adapted probability
threshold Pc of remote connection, the self-adapted LRCS
model demonstrates a state of intermittent criticality,
in which the system quasi-periodically approaches and
retreats from the critical state. A system-wide disorder
that analogizes the dynasty collapse can frequently be
observed in the LRCS model.
Figure 5 shows the results of the Weibull fitting to the

LRCS-based synthetic dynasty collapse events: the inter-
event time distribution obtained from 45 system-wide
events can be fitted very well by the Weibull distribution
with parameters (C, m) = (1.727× 10−5, 1.091) together
with the R-square value of 0.97. Note that the inter-event
time distribution of extreme events is not Weibullian in
the BTW sandpile model.

Discussion and conclusions. – The rank-ordering
technique is well known in the statistical community to be
useful for extracting the tail of the distribution of a sparse
dataset, often characterized by under-sampled fat tails
that correspond to rare extreme events. In this study, by
means of applying the rank-ordering statistics, we show
that historical dynasty duration can be fitted very well

by a Weibull distribution. The Weibull distribution was
initially proposed to describe the life length of materials
under fatigue and fracture loads [36]. The Weibull theory
uses the weakest link approach to describe the strength
of various materials and has been successfully used
in characterizing the variations of the time to failure
of mechanical and electrical components and brittle
materials. It is thus amazing that the distribution of the
time to failure of human society follows the same process
as material fails. Note that the Weibull distribution is the
only distribution that gives a scale-invariant power-law
hazard function [9]. The self-similar dependence of the
hazard rate on time could lead directly to the Weibull
distribution of failure times.
Khmaladze et al. [15] found that data on the lengths

of rule of Roman emperors showed can be fitted by the
exponential distribution. Khmaladze et al. thus claimed
that their reigns ceased purely at random, in unexpected
and unpredictable way, and not as a consequence of
accumulated tensions [15]. While the durations of the
reigns can be exponentially distributed following a Pois-
sonian process without memory effect, our present analy-
sis suggests that the Weibull distribution with long-term
memory represents a reasonable fit to the durations of the
dynasties. The challenge of our present analysis is then
to understand how the exponential Poisson distribution of
individuals is renormalized into the Weibull distribution
of aggregates. What mechanism(s) could be at the origin
of the observed Weibull distribution of historical dynasty
duration? Is it possible that the life of a dynasty could
be explained by the aging process with memory? We are
not so much surprised by the applicability of such mecha-
nism to natural earthquake fault systems. By means of the
spring-block models, Abaimov et al. have demonstrated
that the distribution of the interval times between smaller
earthquakes follows an exponential Poissonian model while
the distribution of recurrence times between extremely
system-wide earthquakes is often Weibullian [9]. There-
fore, if the fall of an emperor can be an analogue of a small
event and the dynasty collapse a system-wide event, the
abovementioned similarity between self-organized complex
system (the slider-block system) and human society is
again surprising.
During the last decade Sociophysics has been the source

of many efforts for physicists to analyze the informa-
tion content of social phenomena with respect to complex
systems, using tools borrowed from statistics, statisti-
cal physics and nonlinear dynamics. Complex systems
are characterized by a great amount of independent
agents interacting with each other in a great many ways.
The science of complexity including statistics, statistical
physics and nonlinear dynamics, is expected as an enlight-
ening tool to probe the behaviors of complex systems
like human society. This study represents an attempt on
statistical investigation of human society and suggests
that there may exist a simple rule, i.e. the Weibull aging
process, for collective human activities in history.
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