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We propose a generic negative correlation between power-law scaling and Hurst expo-
nents for size/magnitude data from real and synthetic earthquakes. The synthetic earth-
quakes were produced from a conceptual earthquake model, the long-range connective
sandpile (LRCS) model. The LRCS model is a new modification of sandpile models that con-
siders the random distant connection between two separated cells instead of neighboring
cells. We calculated the Hurst exponent H and the power-law scaling exponent B for event
size data in the LRCS model. We systematically explored the relationships between these
two exponents (H and B) and conclusively obtained a negative correlation between H
and B. We also found this negative correlation for real earthquake data registered in the
Taiwan Central Weather Bureau (CWB) catalog. This negative correlation has not been
demonstrated previously for real seismicity, although it has been frequently suggested.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Sandpile dynamics and self-organized criticality (SOC)
are exhibited by many natural and social phenomena,
including earthquakes, forest fires, rainstorms, landscapes,
drainage networks, stock prices, and traffic jams. Since Bak
et al. [3,4] introduced the original nearest-neighbor
sandpile model, a considerable amount of further research
has adopted various numerical and analytical techniques
to study modifications of the original sandpile model
[24,9,22,16,2,13,18,7,8]. For example, annealed random-
neighbor sandpile models were first proposed by Christen-
sen and Olami [9] and were then extensively studied on
a long-range connected (small-world) network by, for
example, De Arcangelis and Herrmann [2], Lahtinen et al.
[18], and Chen et al. [7,8].

We have previously proposed a long-range connective
sandpile (LRCS) model that randomly introduces remote
. All rights reserved.
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hen).
connections between two separated cells instead of
nearest-neighboring cells [7,8,20,21]. In this paper, we cal-
culate the Hurst exponent H of avalanche sizes and the
power-law exponent B of the frequency-size distribution
of avalanches in the LRCS model [7,8,20]. The relationships
between the two exponents (H and B) show a strong
dependence upon the calculated time scale, which is asso-
ciated with the finite-size effect. By slightly removing the
finite-size effect, we confirm the presence of a striking neg-
ative correlation between B- and H-values in the LRCS
model. We further demonstrate a negative correlation be-
tween H and B in Taiwanese seismicity data.
2. Long-range connective sandpile (LRCS) models

The LRCS model differs from the original Bak-Tang-
Wiesenfeld (BTW) sandpile model in the method of
releasing grains to nearest-neighboring cells. For a square
lattice of L by L cells, we throw sand randomly, one grain
at a time, onto the grid. In the BTW sandpile model [3,4],
once the total number of accumulated sand grains on a sin-
gle cell reaches the threshold value of four, the sand grains
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are redistributed onto the four adjacent cells (the nearest
neighbors), or they are lost off the edge of the grid. Our
LRCS model, however, releases toppled grains according
to random connections within the whole L by L lattice.
The modified rule of random internal connections is simi-
lar to the implementation of Watts and Strogatz [36]. For
any particular cell, when the accumulated number of
grains exceeds the threshold and redistribution occurs,
one of the four original nearest-neighbor connections has
a chance with the long-range connective probability Pc of
redirecting to a randomly chosen distant cell so that the
original nearest-neighbor connection is replaced by the
randomly chosen cell, which may be far from the toppling
cell. This implementation of releasing grains/energy to re-
mote cells is reminiscent of plausible long-range effects in
real earthquake fault systems ([7,8,20]; see also the text
below).

We further assume that Pc depends strongly on the
topographic change induced by the last event [8,20,21].
This relationship is defined as Pc(t + 1) = [DZ(t)/aL2]3,
where DZ(t) and L2 represent the topographic change due
to the last event and the system size, respectively. The
coefficient a is similar to the normalization constant,
which restricts the value of the connective probability Pc

to between 0 and 1. The LRCS model can thus evoke a high
value of Pc after a large avalanche, reflecting the fact that a
more active earthquake fault system will have a higher
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Fig. 1. Simulation of the LRCS model for a square lattice of 200 by 200 cells. The
the power-law exponent B of the frequency-size distribution, respectively. The B
100 events to calculate the successive B- and H-values of the next window. Th
dynamic variable hZi(t) of the average topographic height of the LRCS model. The
to 103.5 (black bars) are also shown. (For interpretation of the references to co
article.)
probability of establishing long-range connections due to
unstable fault activity, changes in pore-fluid pressure, or
the dynamic triggering of seismic waves. For example, a
larger earthquake generates more radiated energy carried
by seismic waves, thus, is more capable of dynamically
triggering remote tremors far away the main shock. In
those remotely triggered cases, stress perturbation due to
seismic waves is considered as the immediate cause of
triggered events [34,28]. By using this self-adapted proba-
bility threshold Pc of the remote connection, the LRCS mod-
el demonstrates a state of intermittent criticality [27,25,6],
in which the sandpile quasi-periodically approaches and
retreats from the critical state. In the LRCS model with
self-adapted Pc, the dynamic variable of the spatially aver-
aged number of grains on the grid hZi(t) (�

PL2

i¼1ZiðtÞ=L2;
blue line in Fig. 1) generally maintains increasing trends
that are punctuated by large events (black bars in Fig. 1).
The large fluctuation in hZi(t) is an important feature that
mimics the intermittent criticality [27,25,6,23,26,14].

A large avalanche is then followed by a period of quies-
cence and an approach back toward the critical state
(Fig. 1) [8,20,21]. This process is similar to the dynamic
process of an earthquake fault system, involving repetitive
reloading of energy and rebuilding of correlation lengths
toward criticality and the next major event [23,26,14].
The LRCS model proposed here could be called the quar-
terly self-adaptive random-neighbor BTW model, where
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quarterly means that only one of the four nearest-neighbor
connections is removed and redirected, and self-adaptive
means that the long-range connective probability Pc is
recalculated according to the topographic change induced
by the last event. Note that although other random-neigh-
bor versions of sandpile models have been proposed dur-
ing the last two decades [24,9,22,16,2,13,18], none of
them are self-adaptive in the sense of random connection
probability. The self-adapted Pc plays a crucial role in the
intermittency built into in the LRCS model. For more de-
tails about the LRCS model, we refer readers to our previ-
ous papers [8,20,21].
3. Relationship between B- and H-values for avalanches
in the LRCS model

Here, we investigate temporal variations in the power-
law exponent B of the frequency-size distributions and in
the Hurst exponent H of avalanche sizes in LRCS models.
To trace variations in B and H with respect to time, we used
the sliding window technique. We selected various num-
bers of events (hereinafter called the window length) in a
calculation window, ranging from 100 to 4000 events, to
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Fig. 2. Correlation coefficients between B- and H-values calculated with differen
(crosses for L = 50; triangles for L = 100; squares for L = 200; diamonds for L = 4
rescaled by L1.5. The vertical dashed line indicates the rescaled window length of
calculated with different window lengths (upper horizontal axis) for real earthqu
solid red circle represent the results obtained from the LRCS model in Fig. 1 and t
to color in this figure legend, the reader is referred to the web version of this ar
calculate the B- and H-values and then shifted the window
by 10% of its length to calculate the successive B- and H-
values of the next window. For example, if the window
length was 500, we calculated B and H for 500 events
and then shifted the window by 50 events to calculate
the next values of B and H.

To calculate B, we applied the data binning technique
proposed by Christensen and Moloney [10] to reduce the
noise effect of large avalanches (i.e., the effect of finite sta-
tistics). We then performed a least-squares regression to fit
the frequency-size distribution. The R/S analysis used to
calculate H is briefly summarized below. The R/S analysis
utilizes two factors: the range R, which is the difference be-
tween the maximum and minimum values of accumulated
departure from the mean over a time series of length s, and
the standard deviation S over that time span. The rescaled
range is defined as the ratio of R and S (i.e., R/S). The ratio
R/S is closely described by the empirical relationship
(R/S)(s) = (s/2)H, where H is the so-called Hurst exponent.

Fig. 1 is an example of an LRCS model with a grid size of
200 by 200, demonstrating the temporal variations in B
(red line) and H (green line). The B- and H-values were cal-
culated for every 1000 events (i.e., a window length of
1000 events) (solid square in Fig. 2), and the window
1 10

ow length by L1.5
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t window lengths for LRCS models. System sizes L range from 50 to 400
00). The window lengths for the different grid sizes of LRCS models are
0.3. Red circles show the correlation coefficients between B- and H-values
ake data registered in the Taiwan CWB catalog. The solid black square and
he CWB catalog in Fig. 4, respectively. (For interpretation of the references
ticle.)



Fig. 3. Epicenters of earthquakes in the area of Taiwan included in this
study. The map shows earthquakes with magnitudes greater than 2. The
frequency–magnitude distribution of earthquakes in the CWB catalog is
also shown (inset).
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was then shifted by 100 events to calculate the successive
B- and H-values of the next window. The error bars show
the 95% confidence intervals. We have previously shown
that the H-values fluctuate in the opposite direction to
the variation in B [21]. While the value of B usually in-
creases following a large avalanche, the value of H usually
decreases. The H value then increases prior to the next
large avalanche, while the B value decreases.

Here, we systematically explore the correlation coeffi-
cients between B and H by utilizing different window
lengths. Fig. 2 shows the correlation coefficients between
B- and H-values for different window lengths (from 100
to 4000) for four LRCS models with grid sizes of 50 by 50,
100 by 100, 200 by 200 and 400 by 400. This figure shows
that the relationship between the two exponents (H and B)
is strongly dependent upon the window length. When the
window length is too short, so that relevant events may be
divided into different temporal windows, the correlation
between B and H may be weak, as indicated by small
absolute values of the correlation coefficients. On the other
hand, when the window length is long, it is likely to
include irrelevant events within a single calculation win-
dow. Consequently, the absolute values of the correlation
coefficients between B and H may again be small. However,
the negative correlation between B and H can be clearly
seen when an appropriate window length is employed
for various sandpiles.

Note that the horizontal axis in Fig. 2 corresponds to the
rescaled window length. To consider the finite-size effect,
we calculated the correlation coefficients between B- and
H-values for different system sizes L. We then rescaled
the original window lengths for LRCS models of different
system sizes by L1.5. When the rescaled window length is
about 0.3, the relationship between B- and H-values shows
the most significant negative correlation, with correlation
coefficients ranging from �0.4 to �0.8, for L increasing
from 50 to 400 (Fig. 2). As L increases, the significance of
the negative correlation becomes stronger. The L-indepen-
dence of the relationship between B and H (i.e., the same
behavior is observed for different system sizes L) suggests
the negative correlation observed here cannot be attrib-
uted to the finite-size effect [12] and can be considered a
genuine characteristic of the relationship between B and
H in the LRCS model.
4. Relationship between B- and H-values for avalanches
in real seismicity

It is interesting whether this negative correlation exists
between B and H for real earthquake data. To address this
question, we analyzed the earthquake catalog of the Tai-
wan Central Weather Bureau (CWB). The CWB earthquake
catalog includes occurrence data for earthquakes that oc-
curred in the area of Taiwan from 1995 through 2007
(Fig. 3). The frequency–magnitude distribution of earth-
quakes from the CWB catalog is shown in the inset of
Fig. 3. The magnitude/size distribution of earthquakes with
magnitudes greater than 2 fulfills the Gutenberg–Richter
law well, as the b-value (i.e., the abovementioned power-
law exponent B) of the Gutenberg–Richter law is about
0.9. Note that the lowercase b is exclusively used in seis-
mology to denote the scaling exponent of the power-law
frequency–magnitude distribution (the Gutenberg–Richter
law) of earthquakes. Therefore, to satisfy the requirement
of a complete catalog, we considered magnitude 2 as the
completeness magnitude throughout this study. In addi-
tion, to avoid the possibility of aftershock activity biasing
the statistics, we removed aftershocks from the catalog
by applying the de-clustering method of spatiotemporal
double-links [37].

We first estimated the slip from the earthquake magni-
tude by using a first-order approximation without consid-
ering the details of rupture dynamics. In the elastic
dislocation theory [17], a fault with a rupturing area A
and a displacement offset d can be represented by a force
couple with a moment M0 of ldA, where l is the rigidity
of the medium surrounding the rupture source. Statisti-
cally, the scaling relationship between the seismic moment
and the fault area is M0 � A3/2 (e.g., Fig. 11 of [17]). There-
fore, the average slip hdi of an event is simply proportional
to the cubic root of the seismic moment, which we could
directly convert from the local magnitude in the CWB cat-
alog [35]. The Hurst exponent of the slip data was then cal-
culated by R/S analysis. The b-value of the frequency–
magnitude distribution of the earthquakes was fitted by a
least-squares regression. Fig. 4 shows an example of the
temporal variations in the b- and H-values for seismicity



Fig. 4. Temporal variations in the values of b and H for real seismicity data in the CWB catalog from 1995 to 2007. Each point is calculated from a 5000-
event window that is shifted by 500 events to calculate the successive b- and H-values of the next window.
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data registered in the CWB catalog from 1995 to 2007.
Each b and H value in Fig. 4 was calculated from 5000
events, and the window was shifted by 500 events to cal-
culate the successive b- and H-values of the next window.
Again, the variations of the b- and H-values clearly display
a negative correlation (Fig. 5) and the correlation coeffi-
cient between b and H is about �0.5 (the solid red circle
in Fig. 2). The lower plot of Fig. 4 also shows the occurrence
of earthquakes with magnitudes greater than 4.5. The 20
September 1999, Mw 7.6 Chi-Chi earthquake is a good
example with some kind of anomalous b- and H-values
beforehand. As shown in Fig. 4, starting from the middle
1998 through the end of 1999 before the Chi-Chi event,
we can see an interesting relationship with a decreasing
trend in the b-values and an increasing trend in the H-val-
ues. Wu and Chiao [37] also found the precursory decrease
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Fig. 5. Scatter plot for the b- and H-values calculated from real seismicity
data of the CWB catalog.
in the b-values for the Chi-Chi earthquake. Since precur-
sory phenomena before large earthquakes are highly com-
plicated and sort of beyond the scope of the present study,
we here focus on the relationship between b and H. Also
shown in Fig. 2, the red circles indicate the transition of
the relationship between b and H with different window
lengths from 500 to 10,000 earthquakes for the calcula-
tions of b and H. The transition of the relationship between
the b- and H-values for real seismicity data is essentially
the same as that shown by the LRCS model.
5. Conclusion

The present study has important implications for earth-
quake statistics and stochastic processes. To seismologists,
the negative correlation between the two scaling expo-
nents (B and H) is fundamentally important for under-
standing earthquake statistics and rupturing processes
[11,32,29]. Although the negative correlation between the
two scaling exponents (B and H) has previously been sug-
gested in some conceptual models of earthquake fault sys-
tems (e.g., [15]), it has been never demonstrated for
natural seismicity data. Since its introduction, the BTW
sandpile model has represented a conceptual paradigm of
self-organized earthquake fault systems [5]. The original
BTW sandpile models do not, however, show such a nega-
tive correlation [21]. To the contrary, the negative correla-
tion between B and H exhibited in our LRCS model seems
consistent with past studies of earthquake fault systems
[11,15] and it can be also observed in the real earthquake
data in Taiwan as presented in this paper. We also notice
that some other studies had discussed the behavior of var-
ious scaling exponents for earthquake. Lapenna et al. [19]
observed that a major earthquake is quite often preceded
by opposite behaviors of the trends of the variance–time-
curve exponent and the fractal dimension. Telesca et al.
[30] also found a negative correlation between the time
fractal exponent and the space fractal exponent that is re-
lated to the Gutenberg–Richter’s b-value. Therefore, the
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negative correlation between the time fractal exponent
and b-value [30] would be consistent with what we found
in the present paper.

An intuitive explanation of the negative correlation be-
tween B and H can be proposed. Large avalanches (small B)
reshape the sandpile landscape, making it smoother so that
there are fewer ‘‘traps’’ that could stop a future system-
wide avalanche. As a result, H increases. In contrast, larger
B values correspond to more small events, whose superpo-
sition results in higher-frequency noise in terms of the
sandpile landscape and thus smaller H values. A similar
conjecture has been proposed for the self-affine asperity
model of Hallgass et al. [15] who observed that the scaling
exponent of the frequency-size distribution depended on
the roughness of the fault geometry, which is controlled
by the Hurst exponent in the fractional Brownian fault pro-
files. In their numerical simulations (Fig. 4 in [15]), the ob-
served negative correlation between the two scaling
exponents was attributed to the self-affine nature of the
considered fault ensembles. Notice that the scaling expo-
nent B of the frequency-size distribution shares the geo-
metric meaning of the fractal dimension [31,1]. Based on
the self-affine traces of fractional Brownian motion Voss
[33] has presented a relationship between the fractal
dimension D and the Hurst exponent H, i.e. D = 2 � H,
which then suggests the observed negative correlation be-
tween B and H here.
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