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This study extracted some P-wave features from the first few seconds of vertical ground acceleration of

a single station. These features include the predominant period, peak acceleration amplitude, peak

velocity amplitude, peak displacement amplitude, cumulative absolute velocity and integral of the

squared velocity. The support vector regression was employed to establish a regression model which

can predict the peak ground acceleration according to these features. Some representative earthquake

records of the Taiwan Strong Motion Instrumentation Program from 1992 to 2006 were used to train

and validate the support vector regression model. Then the constructed model was tested using the

whole earthquake records of the same period as well as the 2010 Kaohsiung earthquake with 6.4 ML.

The effects on the performance of the regression models using different P-wave features and different

length of time window to extract these features are studied. The results illustrated that, if the first 3 s of

the vertical ground acceleration was used, the standard deviation of the predicted peak ground

acceleration error of the whole tested 15-years earthquake records is 20.89 gal.The length of time

window could be shortened, e.g. 1 s, and the prediction error is slightly sacrificed, in order to prolong

the lead-time before destructive S-waves reaches.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In the last two decades, earthquake early warning (EEW)
techniques have been emerged crediting to the advances in digital
seismology, communications, automatic processing and the algo-
rithms for rapid estimation of earthquake parameters [13]. Based
on the requirement of information for the algorithms to estimate
earthquake parameters, earthquake early warning techniques can
be divided into two groups: regional warning and on-site warn-
ing. Generally, since the regional warning leverages the informa-
tion of several stations next to the epicenter, the accuracy on
earthquake parameters estimation of regional warning is usually
higher than the on-site warning. However, for the region close to
the epicenter, where seismic intensity is usually much higher
than the region outside, the lead-time before destructive wave
arrives provided by the regional warning can be null. On the other
hand, on-site warning can provide more lead-time at the region
close to an epicenter since only the seismic information on
the target site is required. Therefore, raise of the accuracy and
ll rights reserved.
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lead-time of on-site warning is one of the key points to improve
the effect of earthquake early warning techniques.

On-site warning issues an alarm in a few seconds after
triggering based on the initial P-wave motion at a single station.
Nakamura [9] developed an earthquake early warning system
named UrEDAS which predicted potential damage according to
the estimation of magnitude and location based on the calculated
predominant frequency, back azimuth, vertical-to-horizontal
ratio and amplitude level. Nakamura [10] further developed
Compact UrEDAS which simply estimated potential damage based
on the calculation of destructive intensity defined as the loga-
rithm of absolute value of the inner product of acceleration and
velocity. Odaka et al. [12] tried another approach to estimate
magnitude and epicentral distance based on the P-wave ampli-
tude and the fitting parameter of the waveform envelope.
Kanamori [6] proposed another predominant frequency of P-
wave which is similar to the one developed by Nakamura [9] to
estimate the magnitude. The combination of both the predomi-
nant frequency and peak ground displacement of P-wave mea-
sured on the vertical direction is also proposed to recognize
damaging earthquakes. Böse et al. [2] estimated the magnitude,
epicenter distance and peak ground velocity (PGV) based on the
three-component waveforms of acceleration, velocity and
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displacement. In summary, in the above-mentioned literature, the
on-site earthquake early warning is issued according to the
estimated magnitude, location, PGV and/or vulnerability of the
earthquake.

However, the peak ground acceleration (PGA) is also an
representative parameter for earthquake early warning. After an
earthquake, the seismic intensity scale measured at each station
can be calculated according to the measured PGA. For example, in
Taiwan, the Central Weather Bureau calculate the seismic inten-
sity scale based on the equation with the form I¼ alogðPGAÞþb.
Similarly, the Japan Meteorological Agency also reports the earth-
quake intensity level based on the ground acceleration. The
United States Geological Survey (USGS) can also report the
Modified Mercalli Intensity (MMI) scale at each station for smaller
events based on the measured PGA using the relationship devel-
oped by Worden et al. [16]. Besides, for practical concern, PGA
threshold is one of the main criteria for earthquake emergency
reaction in many applications. For instance, the high-speed train
system uses PGA as the main criterion for emergency stop. The
nuclear power plant also uses PGA as the criterion for emergency
shutdown. Therefore, in this study, PGA is chosen as the target to
be estimated. The P-wave features including predominant
frequency, peak ground acceleration, peak ground velocity, peak
ground displacement, cumulative absolute velocity and integra-
tion of the squared velocity will be extracted from the initial
P-wave motion of the vertical component at a single station. The
support vector regression (SVR) is employed to establish a
regression model to predict the PGA according to these P-wave
features. In order to gain more lead-time of the on-site warning,
the effect of the length of the initial P-wave motion on the
performance of the SVR model is also studied.

In addition, in the literature, the database used to establish and
to validate an empirical regression model between the initial P-
wave motion and the final peak ground motion is usually limited
to some selected records of some representative events. Some-
times the epicenter distance is also restricted. As a result, the
applicability of the established empirical regression model could
be restricted to only the selected events. Furthermore, since the
established empirical regression model is never validated through
the earthquake events of an entire period, e.g. 10 years, the
estimated error in practice is never revealed. Therefore, in this
study, the earthquake records between 1992 and 2006 of the
Taiwan Strong Motion Instrumentation Program (TSMIP, [7]) will
be used to test the proposed approach. The database includes the
catastrophic Chi-Chi earthquake and several damaging earth-
quake events as well as more than ten thousands of non-
damaging earthquake records.
2. Methodology

2.1. P-wave features

The on-site earthquake early warning (EEW) technique takes
advantage of the different velocity of propagation of P- and S-
waves. In other words, the expected ground shaking dominated
by S-wave could be estimated based on the recorded early
informative P-wave of a single station. This is usually accom-
plished through the empirical regressions between the P-wave
features extracted from the measurements of the first few
seconds and the final earthquake intensity at the same site.
Satriano et al. [13] reviewed the concepts, methods and physical
backgrounds of EEW. The P-wave features used to estimate the
final earthquake size were also summarized in the same paper.
These P-wave features includes the peak measurement, predomi-
nant period and integral quantities. The P-wave features used to
estimate final earthquake intensity in this study are briefly
introduced in the following paragraphs.

Firstly, the peak measurement of acceleration, velocity and
displacement of the vertical direction after tp seconds of P-wave
arrival are considered. These features are denoted as Pa, Pv and Pd

respectively and can be calculated straightforwardly. These para-
meters were found correlated to the PGA, PGV and PGD of the
entire measured time history of ground motion at the same
station [17].

Next, the effective predominant period proposed by Kanamori
[6] is employed. This parameter is correlated to the earthquake
magnitude and can be calculated as

Tc ¼ 2p=
ffiffiffi
r
p

, where r¼

Z tp

0

_u2
ðtÞdt=

Z tp

0
u2ðtÞdt ð1Þ

where u(t) and _uðtÞ are the vertical component of displacement
and velocity time history of ground motion after P-wave arrival,
respectively.

Finally, two more integral quantities are utilized, i.e. the
cumulative absolute velocity (CAV) and the integral of the
squared velocity (IV2). The CAV is used as a threshold to
determine whether a damaging earthquake is coming [3] and is
defined as

CAV¼

Z tp

0
9 €uðtÞ9dt ð2Þ

where €uðtÞ is the vertical component of acceleration time history
of ground motion after P-wave arrival. The IV2 is correlated to
earthquake magnitude and is defined as [4]

IV2¼

Z tp

0

_u2
ðtÞdt ð3Þ

In this study, the above-mentioned 6 P-wave features
extracted from the vertical component of ground motion after
P-wave arrival, i.e. Pa, Pv, Pd, Tc, CAV and IV2, are used for rapid
estimation of PGA.

2.2. Support vector regression

As presented in the papers introduced in Section 2.1, the EEW
techniques usually establish empirical regression between only
one or two P-wave features and the target earthquake parameter.
Furthermore, a simple linear relationship between the logarithm
of both the P-wave features and the target earthquake parameter
is often preferred [10,12,6,17,1,4]. Sometimes, the combination of
the P-wave features could lead to a better empirical regression [4].
However, although concise and sometimes physical regression
models are preferred, the simplification could result in a com-
promised regression model.

A better regression model could be achieved by considering
multiple P-wave features and a more complex regression model,
which can be accomplished by artificial intelligence. Support
vector regression (SVR), which is a supervised learning method
based on statistical learning theory, is outstanding for solving the
multivariate problem [15]. Moreover, it is highlighted due to its
outstanding advantages such as no local minimum problem and
reliability at underfitting, overfitting or high noise conditions.
Owing to those merits, this paper employs SVR algorithm to
establish a nonlinear regression model between several P-wave
features and PGA.

Given a training data ðx,yÞAR, the SVR finds a regression
function which can best approximate the actual output vector y
with an error tolerance e, and is as flat as possible. This is done by
mapping the input data x in a higher dimensional feature space,
in which the data may exhibit linearity, and then perform linear
regression in this feature space. Let x be mapped into a feature
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space by a nonlinear function f xð Þ. The regression function can be
expressed as

f ðw,bÞ ¼wUfðxÞþb ð4Þ

where w is a regression coefficient vector, and b is the model
offset. A Vapnik’s e -insensitive loss function is adopted in the SVR
as

xi,x
n

i ¼
yi�ðwUfðxiÞþbÞ for 9yi�ðwUfðxiÞþbÞ94e
0 otherwise

(
ð5Þ

where xi and xn

i are training errors located at upper side and lower
side of the regression function, respectively, as defined in Fig. 1.
When the e-insensitive loss function is used, absolute errors
larger than e are accepted, and smaller errors in the tube (�e, e)
are neglected.

The regression problem can be expressed as the following
convex optimization problem [14].

min
w,b,x,xn

1

2
99w992

þC neþ 1

m

Xm
i ¼ 1

ðxiþx
n

i Þ

 !" #
ð6Þ

subjected to

wUfðxiÞþb�yireþxi

yi�wUfðxiÞ�breþxn

i

xi,x
n

i Z0 i¼ 1, � � � ,m

where m is the number of training data. Eq. (6) is called the
n-support vector regression where n is the lower bound of the
fraction of the number of support vectors; and C is a positive
constant that determines the degree of penalized loss when a
training error occurs. Because the size of variable e is traded off
against model complexity and training errors via the constant n, it
will be determined automatically after training if n is chosen. The
SVR avoids underfitting and overfitting the training data by
minimizing both the regularization term :w:2

=2 and the training
error term Cðneþ1=m

Pm
i ¼ 1ðxiþx

n

i ÞÞ in Eq. (6). Minimizing the
first term is equivalent to maximize the margin of the tube, and
minimizing the second term corresponds to minimizing the
empirical risk.

Introducing a dual set of Lagrange multipliers, ai and bi,
enables the optimization problem to be solved more easily in
the dual form, by applying the standard quadratic programming
algorithm.

max
a,b
�

1

2

Xm

i ¼ 1

Xm
j ¼ 1

ðai�biÞðaj�bjÞkðxi,xjÞþ
Xm
i ¼ 1

yiðai�biÞ

2
4

3
5 ð7Þ
Fig. 1. Basic concepts of the SVR technique and the Vapnik’s e-insensitive loss

function, where e is the error tolerance. The absolute errors larger than e are

accepted, and smaller errors in the tube (�e, e) are neglected. The parameters

xi and xn

i are training errors located at upper side and lower side of the regression

function, respectively.
subjected to

Xm

i ¼ 1

ðai�biÞ ¼ 00rai, bir
C

m
for i¼ 1,2, � � � ,m

Xm

i ¼ 1

ðaiþbiÞrCn

where kðxi,xjÞ is the kernel function to yield the inner products in
feature space; m is the number of training data. The radial basis
function kernel, kðxi,xjÞ ¼ expð�99xi�xj99=2s2Þ, is used in this
paper. After the Lagrange multipliers, ai and bi, are determined.
The parameters w and b can be estimated under Karush–Kuhn–
Tucker complementarity conditions [5]. Therefore, the prediction
function can be expressed as

f ðxÞ ¼
XJ

i ¼ 1

ðai�biÞkðx,xiÞ

" #
þb ð8Þ

where J is the number of nonzero (ai�bi), i.e. support vectors. The
input data x and output data y of the SVR model are the six P-
wave parameters and PGA, respectively. Because the PGA of the
training data can cover a wide range, e.g. from less than 1 gal to
more than 1000 gal, the training data with small PGA tends to be
neglected when calculating the error. As a result, the estimation
accuracy for small PGA could be quite poor. In order to estimate
the PGA with acceptable accuracy for both small amplitude and
large amplitude, the parameter n is chosen as 0.95 which makes
most of the training data support vectors, including the one with
small PGA. This also improves the estimation accuracy for data
with small PGA.

There are two more parameters of the SVR model remain
undetermined, i.e. parameter C and parameter s in the kernel
function. The simple grid search method with grids range from
2�10 to 210 in intervals 21 for both parameters is applied to
optimize these two parameters. In order to prevent overfitting,
10-fold cross validation process is employed. The parameters
with the smallest cross validation root mean squared error are
selected to construct the SVR model. After the best parameters
C and s are chosen, the SVR model can be constructed.
3. Earthquake data and preprocessing

The TSMIP network has been carried out by the Central
Weather Bureau (CWB) to collect high-quality instrumental
recordings of strong ground motions caused by earthquakes
around Taiwan. About 700 free-field stations have been installed
and are presently operating throughout Taiwan. The TSMIP
station signals are digitized at 200 or 250 samples per second
with 16 bit resolution or higher. Most accelerographs have a
dynamic range of 72g. Approximately 15-years of TSMIP data
between 29 July 1992 to 31 December 2006 are employed in this
paper. The original number of these TSMIP data are 105,360
three-components records. However, some of the data are
obviously distorted and are therefore excluded from the data
set. Moreover, some of the data lengths are shorter than 3 s which
are also excluded. The remaining avaliable 91,142 data, named as
‘‘Testing Earthquake Data’’, are employed in this study to estimate
the performance of the proposed approach in general.

In order to reduce the time consuming for training the SVR
model, 71 earthquake events with local magnitude, ML, between
3.0 and 7.3 are selected for all focal depth (2.8–282.8 km).
Although Taiwan is a seismically active zone where 54 earth-
quake events with ML46.0 occured within 15 years, the strong
ground motion records of large seismic intensity in the ‘‘Testing
Earthquake Data’’ are still limited. If all the destructive ground
motion records are used as the base for constructing the
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SVR model, the estimation of accuracy of the SVR model may not
be convincing because a question may be arised to doubt if the
SVR model can predict other destructive ground motion records,
even though the SVR model is believed robust to overfitting.
Therefore, in this study, only half of the strong ground motion
records of the 71 earthquake events will be used to train the SVR
model. As a result, the database for training the SVR model
consists of 4166 data, which is named as ‘‘Representing Earth-
quake Data’’, whose histogram and distribution of magnitudes
and hypocenter distance are shown in Fig. 2.

The original strong ground motion records are acceleration
signals. The zero-mean normalization of the records was applied.
The records were integrated once and twice to obtain velocity and
displacement signals, respectively. The second-order 0.075 Hz
high-pass Butterworth filter was applied to remove the low-
frequency drift after integration. The Short-Term Average/Long-
Term Average (STA/LTA) algorithm was applied to automatically
determine the P-wave arrival time.
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acceleration, peak velocity and peak displacement, respectively; Tc represents the effect

represents the integral of the squared velocity.
4. Results and discussions

First of all, in order to find the best P-wave features to estimate
PGA, the combinations of the six P-wave features used as the input
data of the SVR model were studied. Totally 57 cases of all possible
combinations were studied (57¼ C1

6þC2
6þC3

6þC4
6þC5

6þC6
6, where

Cn
k ¼ nðn�1Þðn�2Þ � � � ðn�kþ1Þ=k!). At first, a typical length of the

time window tp was choosen as 3 s, which was used most frequently
in the literature. The ‘‘Representing Earthquake Data’’ was used to
determine the parameters of the SVR models of different combina-
tions. After the SVR model was constructed of each case, the
standard deviation of the errors between real PGA and predicted
PGA of the ‘‘Testing Earthquake Data’’ using the SVR model was
calculated.

Fig. 3 depicts the standard deviations of the predicted PGA
errors of the ‘‘Testing Earthquake Data’’ using the SVR models of
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different combination of P-wave features as the input. In general,
the predicted PGA errors decreases as more P-wave features are
considered, which implies more information of the P-wave may
help the SVR model predict the PGA. Among the SVR models
which use only individual P-wave feature, the predicted PGA
errors of the one using CAV is the smallest, followed by the one
using Pv. Among the SVR models which use two P-wave features,
the predicted PGA errors of the one using CAV and Pv is the
smallest. If three P-wave features are used, the SVR model which
uses CAV, Pv and Tc makes the smallest predicted PGA errors,
which is already close to the predicted PGA errors of the one using
six P-wave features. If fewer P-wave features are required to
construct the SVR model, these three features could be choosen
with higher priority. Among all SVR models, the one uses all six
P-wave features predicts the PGA with the least error. Therefore,
in this study, the SVR model using all six P-wave features is
selected and employed in the following sections. The final value
of the parameters C and s were choosen as 4096 and 1.4142,
respectively, which can be used to reconstruct the SVR model.

Fig. 4 compares the real PGA and the predicted PGA of the
‘‘Testing Earthquake Data’’ using the SVR model of six P-wave
100 101 102 103
100

101

102

103

Real PGA (gal)

100 101 102 103

Real PGA (gal)

P
re

di
ct

ed
 P

G
A

 (
ga

l)

100

101

102

103

P
re

di
ct

ed
 P

G
A

 (
ga

l)

I

II

III

IV

V

VI

VII

I

II

III

IV

V

VI

VII

Fig. 5. Real PGA and the predicted PGA of the four earthquake events with largest PGA

17 July 1998; (b) Chi-Chi earthquake on 21 September 1999; (c) Chai-Yi earthquake on 2

to ‘‘VII’’ represent the seismic intensity scale in Taiwan. The regions enclosed by the blu

one, while the regions enclosed by the red lines represent the seismic intensity of th

references to color in this figure legend, the reader is referred to the web version of th
features. The regions enclosed by the blue lines and the red lines
are within zero- and one-level difference of the seismic intensity
scale of Taiwan for reference, respectively. It can be observed in
the figure that the predicted PGA is quite approximate to the real
PGA. The standard deviation of the predicted PGA errors is
20.89 gal, and the ratio of the predicted PGA located within
one-level difference from the real PGA is 99.22%. Note that the
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this paper.

Furthermore, in order to know the performance of the SVR
model for specific earthquake events, the real PGA and the
predicted PGA of the four earthquake events with largest PGA of
the ‘‘Testing Earthquake Data’’ are compared in Fig. 5. It can be
observed in the figure that the predicted PGA of the earthquake
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ally is almost two-levels underestimated comparing to the real
PGA. Remind that EEW technique only employs the information
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carried by the first few seconds of P-wave, therefore the earth-
quake intensity with long or complex slip propagation process
could be underestimated. The Chi-Chi earthquake was reported as
with at least two asperities [8]. Base on the fault model proposed
in the paper, one minor asperity was located in the hypocenter
region with average slip of about only 3 m, while the major
asperity was located about 30 km to 65 km north of the hypo-
center region with average displacement about 9 m. The rupture
of the north major asperity was believed to start after about 13 s
of the rupture of the minor asperity at the hypocenter. As a result,
the estimation of the Chi-Chi earthquake intensity, which was
mainly caused by the rupture of the major asperity 13 s after the
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minor asperity rupture, based on the first few seconds of P-wave
become not possible. Nevertheless, the estimation of PGA could
be improved if longer tp is used. An example is illustrated in Fig. 6
where the PGA is predicted by the SVR model with tp¼10. Note
that, although the PGA is predicted much close to the real PGA in
this case, the response time is sacrificed.

Next, the effect of the length of time window tp was studied.
Although longer tp reaches higher reliability, the lead-time of
early warning is sacrificed. As discussed, the lead-time is
the crucial point for an effective earthquake warning system
which should issue an early warning before the arrival of
destructive seismic waves, instead of issuing an alarm with very
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high reliability after or during the invading of destructuve
seismic waves.

The length of the time window tp ranges from 0.1 s to 10 s in
intervals 0.1 s. The results show that the standard deviation of the
predicted PGA errors of the ‘‘Testing Earthquake Data’’ decreases
as tp increases, as shown in Fig. 7. The standard deviation of
predicted error diminishes very quickly from about 34 gal to
23 gal within the first 1 s. It continues to decrease gradually
Fig. 9. The locations of the four stations, the adjacent damaged buildings and the

epicenter of the 2010 Kaohsiung earthquake, plotted in the contour map of the

measured PGA (gal). The black star represents the epicenter, the blue triangle

represents the station and the black cross represents the adjacent damaged

building. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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Fig. 10. The predicted PGA of the SVR models with tp ranges between 0.1 s and 10 s in

The measured acceleration time history of three directions at each station is also plott
thereafter to less than 18 gal. In addition, the ratios of the
predicted PGA located within one-level difference from the real
PGA are also plotted in the same figure. The one-level predicted
ratios increase dramatically from about 91% to 97% within the
first 0.4 s and then continue to increase very fast to almost 99% till
tp¼1, which is already quite close to the maximum value
saturated after around tp¼4. It seems that tp could be less than
3 s for practical application using the proposed approach, thus the
extent of the region without lead-time could be reduced and
valuable response time could be earned.

Finally, the feasibility of the proposed SVR model is studied
through application to the 2010 Kaohsiung earthquake which is
absent from the ‘‘Testing Earthquake Data’’. The Kaohsiung earth-
quake with magnitude ML¼6.4 and focal depth 22.6 km caused
96 injured and hundreds of buildings damaged with different
levels. The maximum PGA is 463.03 gal measured at CHY062
station about 30.48 km from the epicenter, while the minimum
PGA is 5.16 gal measured at TAP057 station about 254.46 km
from the epicenter. All the TSMIP records of the Kaohsiung
earthquake are with good quality, and the real PGA and the
predicted PGA of these 390 earthquake records are compared in
Fig. 8 using the SVR model with tp¼3. Again, the overall
approximate relationship between real PGA and the predicted
PGA can be observed.

The performance of the SVR models at several stations close to
the epicenter are also studied. According to the reconnaissance
report of National Center for Research on Earthquake Engineering in
Taiwan (NCREE), four stations, i.e. KAU020, KAU018, CHY062 and
CHY063, with short distance from the epicenter of 18.46 km,
24.8 km, 30.5 km and 37.2 km respectively are accompanied with
severe or moderate damage of nearby buildings and nonstructures
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[11]. The locations of the four stations, the adjacent damaged
buildings and the epicenter are marked in Fig. 9.

The predicted PGA at these four stations using the SVR models
with different length of time windows, i.e. tp¼0 to tp¼10, and the
measured acceleration time history of three directions are plotted
together in Fig. 10. It can be observed that after the arrival of
P-wave, all the predicted PGA of these four stations at different
time are larger than 80 gal or 92 gal, which corresponds to
intensity V of Taiwan scale and intensity VI of MMI scale [16].
In other words, if the warning is issued based on these intensities,
the region close to these four stations could be alerted right after
the arrival of P-wave. However, in practice, due to the higher
uncertainty of the predicted PGA using less P-wave information,
the warning could be postponed until the first second if higher
reliability is demanded. Furthermore, if the warning is issued at
the first second after the arrival of P-wave, the response time
before the strike of the largest seismic wave of these four stations
are 4 s to 8 s.
5. Conclusions and discussions

In this paper, a novel approach for EEW is proposed. The
approach estimates PGA using the SVR models based on P-wave
features extracted from the first few seconds of the vertical
ground acceleration record at a single station. These features
include Tc, Pa, Pv, Pd, CAV and IV2. The effects on the performance
of the SVR models using different combinations of these P-wave
features are studied. The results show that the SVR model which
uses these six features together may have the smallest prediction
error of the PGA. However, if fewer P-wave features are preferred
to construct the SVR model, the features CAV, Pv and Tc could be
chosen with higher priority.

The SVR models are trained using the ‘‘Representing Earth-
quake Data’’ which includes only half of the earthquake records of
71 representative earthquake events of TSMIP from 1992 to 2006
(totally 4116 records). In order to estimate the overall prediction
error in practice, the SVR models are validated by the ‘‘Testing
Earthquake Data’’ which includes the whole 91,142 earthquake
records of TSMIP of the same period. Generally, the predicted PGA
is quite approximate to the real PGA, but is slightly under-
estimated. The standard variation of the error between the
predicted PGA and the real PGA for the ‘‘Testing Earthquake Data’’
using the SVR model with tp¼3 is 20.89 gal, while the ratio of the
predicted PGA located within one-level difference from the real
PGA is 99.22% (Taiwan seismic intensity scale).

The effects on the performance of the SVR models using
tp¼0.1 s to tp¼10 s in intervals 0.1 s are also studied. As expected,
higher reliability of PGA prediction could be achieved with longer
tp. However, the standard deviation of the prediction error
diminishes very quickly within the first 1 s, while the one-level
prediction ratio also increase dramatically and reaches a high
percentage which is close the maximum value. As a result, more
remaining reaction time could be earned for practical application
if smaller tp is used.

The feasibility of the proposed SVR model is also studied
trough application to the damaging 2010 Kaohsiung earthquake
which is excluded from the ‘‘Testing Earthquake Data’’. Again, the
overall approximate prediction of PGA is observed. In addition,
the performance of the SVR model at four stations accompanied
with severe or moderate damage of adjacent buildings and
nonstructures are illustrated. It seems that the warning could be
issued at these four stations based on the large PGA predicted.
Furthermore, even though the epicenter distance of these four
stations are quite small, i.e. between 18.46 km and 37.2 km,
the response time before the strike of the largest seismic wave
are 4–8 s if the warning is issued at the first second after the
arrival of P-wave. Note that the focal depth of the Kaohsiung
earthquake is 22.6 km. The response time could be shortened if
the focal depth is less.

Although the proposed SVR model seems to perform well for
most of the earthquakes in the ‘‘Testing Earthquake Data’’, the
predicted PGA of the earthquakes with long or complex slip
propagation process could be underestimated if short tp is used,
due to that the information carried by the first few seconds of
P-wave is limited. This phenomenon is usually observed when
applying to huge subduction-zone earthquakes, such as the 2011
Tohoku earthquake in Japan and the 2010 Chile earthquake. In the
application of the proposed SVR model with tp¼3 on the 1999
Chi-Chi earthquake in Taiwan, the predicted PGA is generally
underestimated due to the long or complex two-stage slip
process. The estimation of PGA could be greatly improved if
longer tp is used; however, the response time is sacrificed. Future
research to overcome the challenge of EEW techniques due to
long or complex slip propagation process is still required.
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