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This study constructs an integrated magnetic anomaly map of Taiwan and its vicinity that combines land
magnetic data and marine magnetic data. The reduction to pole (RTP) correction method was applied to
the integrated magnetic anomaly data. The corrected magnetic anomaly results for a region roughly
880 km in width and 660 km in length fit well with geological tectonic signatures and are used to esti-
mate the Curie point isotherm. The adopted Curie point depth method provides a relationship between
the 2-D FFT power spectrum of the magnetic anomalies and the depth of magnetic sources by transform-
ing the spatial data into the frequency domain. The basal depth of the magnetic sources is calculated from
the magnetic data. Finally, the Curie point depth of Taiwan is obtained. The highest value of 17 km is
located in northern Taiwan, and the lowest value of 6 km is located at southern Taiwan and also has
the highest thermal gradient of 88 �C/km. The Curie point depth is consistent with heat-flow measure-
ments with correlation coefficient 0.62.
� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA license

(http://creativecommons.org/licenses/by-nc-sa/3.0/).
1. Introduction

The Curie point depth is the theoretical surface with a temper-
ature of approximately 580 �C and can be considered an index of
the bottom of a magnetic source, due to ferromagnetic minerals
converting to paramagnetic minerals. Geomagnetic anomalies,
which are retrieved from magnetic survey, can be utilized to study
magnetic structures above the Curie point depth (Bhattacharyya
and Leu, 1975a,b; Byerly and Stolt, 1977; Blakely and
Hassanzadeh, 1981; Blakely, 1988; Smith and Braile, 1994;
Tanaka et al., 1999; Chiozzi et al., 2005; Eppelbaum and Pilchin,
2006; Trifonova et al., 2009; Aboud et al., 2011). Meanwhile, if
temperature on the Earth’s surface is also taken into account, the
geothermal gradient can be constructed from the temperature dif-
ference between the Earth’s surface and 580 �C, divided by the
Curie point depth.

Earlier magnetic studies in Taiwan often focused on regional
geological structures, oil–gas exploration, and mineral surveys
(Hsieh and Hu, 1972; Wang and Hilde, 1973; Chia and Pan, 1975;
Hsiao and Hu, 1978; Yu and Tsai, 1979, 1981; Chang and Hu,
1981; Hu, 1981; Shyu and Chiao, 1983; Hu and Chen, 1986; Liu
et al., 1992; Yang et al., 1994; Chen et al., 2001). Other investigations
collected regional data and combined them with marine data from
oceanic magnetic surveys to construct magnetic anomaly maps in
Taiwan’s region (Hsu et al., 1998; Wang et al., 2002). However, these
magnetic anomaly maps lack data measurements for the Central
Range and Coastal Range, due to the difficulty of measuring the vio-
lent topography relief on Taiwan Island. To obtain the data distribu-
tion for mountainous areas of Taiwan, 11 permanent magnetic
stations were built from north to south in Taiwan and utilized as
base stations in 2002 (Yen et al., 2004; Chen et al., 2009). Mean-
while, a magnetic survey of the whole island was executed from
2003 to 2004. The land data of over 6000 points covered Taiwan
Island well, including plains and ranges every 2 or 7 km. Effects of
the diurnal variation at different geo-latitudes were removed from
the magnetic data received from the whole island survey, through
continuous records of the nearest permanent magnetic station.
Earth’s main magnetic fields are evaluated by deducting the mag-
netic field background as given by the International Geomagnetic
Reference Field (IGRF). After the diurnal variation, latitude, eleva-
tion, and IGRF corrections, all the data points are corrected for mag-
netic anomalies at the same time and same datum (Yen et al., 2009).

Many tectonic studies have covered Taiwan’s seismology (Rau
and Wu, 1995; Ma et al., 1996; Kim et al., 2005), GPS (Yu et al.,
1999), and geology (Suppe, 1981; Wu et al., 1997; Lin, 2000), but
research is lacking on the base tectonic knowledge in the magnetic
domain. This study presents an integrated magnetic anomaly map

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jseaes.2014.04.007&domain=pdf
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://dx.doi.org/10.1016/j.jseaes.2014.04.007
http://creativecommons.org/licenses/by-nc-sa/3.0/
mailto:yenhy@earth.ncu.edu.tw
http://dx.doi.org/10.1016/j.jseaes.2014.04.007
http://www.sciencedirect.com/science/journal/13679120
http://www.elsevier.com/locate/jseaes


H.-H. Hsieh et al. / Journal of Asian Earth Sciences 90 (2014) 26–33 27
combining the latest land magnetic data, including range areas and
marine magnetic anomalies, to investigate Taiwan’s Curie point
depth and thermal gradient.
2. Geological setting

Taiwan is located between the Ryukyu subduction zone to the
northeast and the Luzon Arc subduction zone to the south. A
young orogeny resulted from the northwestern movements of
the Philippine Sea plate (PSP), which intensely interacted with
the Eurasian plate (EP). As a result, the strikes of the geological
structures in Taiwan are generally in a NNE–SSW direction
(Fig. 1). Five major geological zones, Coastal Plain (CP), Western
Foothills (WF), Central Range (CR), Longitudinal Valley Fault
(LVF), and Coastal Range (CoR), can be identified in Taiwan
Island (Chou, 1973). Tertiary rocks dominate the surface geology
in Taiwan except for the eastern side of CR, which is exposed
with pre-Tertiary metamorphic complexes. The Miocene and
Fig. 1. Topography and geological subdivisions of the Taiwan region. CP: Coastal Plain;
Central Range; CoR: Coastal Range; LVF: Longitudinal Valley Fault; PH: Peikang High (a
Lukang Magnetization High. Manila and Rykukyu Trenches are drawn on the basis of ba
earlier type rocks resulting from a former island arc are located
east of the metamorphic complex in CoR. LVF separates CoR to
the east from CR to the west and is considered a suture that jux-
taposes older continental rocks and young island arc materials.
CR is composed of three parts: Hsuehshan Range (HR), Backbone
Range (BR), and Eastern Central Range (ECR). BR and ECR are
composed mainly of slates, and HR is dominated by alternating
sandstone and shale layers. CoR is usually thought of as the
arc collision from two plates filled with igneous rocks with a
high ferromagnetism. WF is composed of Oligocene and Pleisto-
cene clastic sediments stacked by a combination of northwest
vergent folds and low-angled thrust faults dipping to the south-
east. CP is composed of Quaternary alluvial deposits and Neo-
gene strata underneath.

Two special geological zones, the Kuanying high (KH) and the
Peikang high (PH), are located in northwest and west Taiwan,
respectively. These are geometric basement highs formed by
harder and older rocks. KH is the other prominent basement
beneath the northwestern offshore area (Sun and Hsu, 1991). PH
WF: Western Foothills; HR: Hsuehshan Range; BR: Backbone Range; ECR: Eastern
geometric basement high); KH: Kuanyin High (a geometric basement high); LMH:
thymetry only.
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is the shallowest pre-Tertiary basement in west Taiwan and is a
natural divide between north and south Taiwan.

3. Data

The magnetic anomaly data for land were retrieved from the
whole island survey (Yen et al., 2009). To reduce the influence of
boundary conditions and edge effects on the calculation of Curie
point depth, we included the marine magnetic data, which were
modified from the cruises data collected by NGDC, and aeromag-
netic data (Hsu et al., 1998). To avoid the high frequency noise
caused by tiny structures near ground and coastline, the land mag-
netic anomalies were combined with marine magnetic anomalies
after low-pass filtering. Fig. 2a presents the integrated magnetic
anomaly map, which spans 117�E to 125�E and 21�N to 27�N, cover-
ing Taiwan and its vicinity and the subduction and collision areas.

4. Methodology

The method that we used to estimate Curie point depth is based
on the spectral analysis of magnetic anomaly data. The basic 2-D
spectral analysis method was described by Spector and Grant
(1970). They estimated the depth to the top of magnetized rectan-
gular prisms (Zt) from the slope of the log power spectrum.
Bhattacharyya and Leu (1975a,b, 1977) further calculated the
depth of the centroid of the magnetic source bodies (Z0). Okubo
et al. (1985) developed the method to estimate the bottom depth
of the magnetic bodies (Zb) using the spectral analysis method of
Spector and Grant (1970).

Following the method presented by Tanaka et al. (1999), it was
assumed that the layer extends infinitely in all horizontal direc-
tions. The depth to a magnetic source’s upper bound is much smal-
ler than the magnetic source’s horizontal scale, and the
magnetization M(x, y) is a random function of x and y. Blakely
(1995) introduced the power-density spectra of the total-field
anomaly UDT:

UDTðkx; kYÞ ¼ UMðkx; kYÞ � Fðkx; kY Þ; ð1aÞ

Fðkx; kYÞ ¼ 4p2C2
mjHmj2jHf j2e�2jkjZt ð1� e�jkjðZb�ZtÞÞ2; ð1bÞ

where UM is the power–density spectra of the magnetization, Cm is a
proportionality constant, and Hm and Hf are factors for magnetiza-
tion direction and geomagnetic field direction, respectively. The
equation can be simplified by noting that all terms except jHmj2

and jHf j2 are radially symmetric. Moreover, the radial averages of
Hm and Hf are constant. If M(x, y) is completely random and uncor-
related, UMðkx; kY Þ is a constant. Hence, the radial average of UDT is

UDTðjkjÞ ¼ Ae�2jkjZt ð1� e�jkjðZb�ZtÞÞ2; ð2Þ

where A is a constant and k is the wavenumber. For wavelengths
less than about twice the thickness of the layer, Eq. (2) approxi-
mately becomes

ln½UDTðjkjÞ1=2� ¼ ln B� jkjZt ; ð3Þ

where B is a constant. We could estimate the upper bound of a mag-
netic source Zt by fitting a straight line through the high-wavenum-
ber part of a radially averaged power spectrum ln½UDTðjkjÞ1=2�.

On the other hand, Eq. (2) can be rewritten as

UDTðjkjÞ1=2 ¼ Ce�jkjZ0 e�jkjðZt�Z0Þ � e�jkjðZb�Z0Þ
� �

; ð4Þ

where C is a constant. At long wavelengths, Eq. (4) can be rewritten
as

UDTðjkjÞ1=2 ¼ Ce�jkjZ0 e�jkjð�dÞ � e�jkjðdÞ
� �

� Ce�jkjZ0 2jkjd; ð5Þ
where 2d is the thickness of the magnetic source. From Eq. (5), it
can be concluded that:

ln UDTðjkjÞ1=2
h i

=jkj
n o

¼ ln D� jkjZ0; ð6Þ

where D is a constant. The centroid of the magnetic source Z0 can be
estimated by fitting a straight line through the low-wavenumber
part of the radially averaged frequency-scaled power spectrum
lnf½UDTðjkjÞ1=2�=jkjg.

From the slope of the power spectrum, the upper bound and the
centroid of a magnetic body can be estimated. The lower bound of
the magnetic source can be derived (Okubo et al., 1985; Tanaka
et al., 1999) as

Zb ¼ 2Z0 � Zt: ð7Þ

Since Zb is the lower bound depth of the magnetic body, it sug-
gests that ferromagnetic minerals are converted to paramagnetic
minerals due to temperature of approximately 580 �C. Therefore,
the obtained bottom depth of the magnetic source, Zb, was
assumed to be the Curie point depth.

In order to relate the Curie point depth (Zb) to Curie point tem-
perature (580 �C), the vertical direction of temperature variation
and the constant thermal gradient were assumed. The geothermal
gradient (dT/dz) between the Earth’s surface and the Curie point
depth (Zb) can be defined by Eq. (8) (Tanaka et al., 1999;
Stampolidis et al., 2005; Maden, 2010):

dT=dz ¼ 580
�
C=Zb: ð8Þ

Further, the geothermal gradient can be related to the heat flow
q by using the formula (Turcotte and Schubert, 1982; Tanaka et al.,
1999):

q ¼ kðdT=dzÞ ¼ kð580
�
C=ZbÞ: ð9Þ

where k is the coefficient of thermal conductivity. From Eq. (9), the
Curie point depth is inversely proportional to heat flow.

5. Curie point depth estimates for Taiwan

The magnetic anomalies measured on the Earth’s surface, in
which the Earth’s main field has been removed, result from under-
lying magnetic materials due to susceptibility. The inclination and
the declination of the Earth’s main field dominate the magnetic
anomalies of the induction field. The correction of reduction to pole
(RTP) is often applied to the magnetic anomalies to obtain cor-
rected maps of magnetic anomaly values induced by the inclina-
tion of 90� and the declination of 0�. Thus, the anomaly values in
corrected maps are with respect to magnetic materials, which lie
vertically below. The traditional RTP method (Baranov, 1957) is
usually used in areas at the middle or high magnetic latitudes. Tai-
wan is located at about 22�N–26�N. Cooper and Cowan (2005)
developed the RTP method, which is better suited to Taiwan and
its vicinity. The integrated magnetic data of Fig. 2a were reduced
to the North magnetic pole. The corrected reduction to pole anom-
aly map of Taiwan is shown in Fig. 2b.

The corrected map (Fig. 2b) spanning roughly 880 km in the
E–W direction and 660 km in the N–S direction was the input for
the Curie point depth analysis. The depth simulations suggest that
the optimal square window dimension is about 10 times the esti-
mated depth (Chiozzi et al., 2005). Thus, the map was subdivided
into square subregions of 250 km � 250 km. These subregions are
shifting with respect to each other in increments of 10 km. The
2-D FFT power spectrum method (Eqs. (3) and (6)) was applied
to each subregion. Z0, the centroid depth of magnetic sources,
and Zt, the top depth of magnetic sources, were derived from the
slopes of the longest and second-longest wavelengths of the fre-
quency-scaled power spectrum lnf½UDTðjkjÞ1=2�=jkjg and the radially



Fig. 2. (a) Integrated magnetic anomaly map of Taiwan and vicinity; (b) corrected magnetic anomaly map of Taiwan and vicinity.
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averaged power spectrum ln½UDTðjkjÞ1=2�, respectively. An example
of the estimates in a subregion is shown in Fig. 3. Because the com-
putation requires an extensive dataset and the magnetic data do
not cover the entire area, we considered the missing-data area in
the northwest corner of the map and the crustal materials sharply
change between land and marine areas. The analysis of Curie point
depth was only along the central part of the investigated area (Tai-
wan Island). The centers of subregions are marked with signs in
Fig. 4a. Here, the Curie point depth (Zb) of Taiwan was derived from
Eq. (7) (Fig. 4a).
6. Interpretations and analytical results

In the corrected map (Fig. 2b), the positive anomaly belt in the
SW–NE direction along Penghu Islands in the Taiwan Strait and
extending into Taiwan Island is further north than in the integrated
anomaly map (Fig. 2a). The positive anomaly is considered the con-
tinental boundary of EP and is consistent with the location of the
basalt rocks near Penghu Islands (Chung et al., 1994; Hsieh et al.,
2010) and the Lukang Magnetization High (LMH) structure (Hsu
et al., 2008). The other belt shape with a positive anomaly on the



Fig. 3. Example of spectra for the estimation of (a) the depth of the top bound (Zt)
and (b) the depth of the centroid (Z0) of magnetic sources.
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eastern side of Taiwan on the corrected map is from south (Lanyu
and Lutao) to north (Hualien and Yilan) and fits well the Luzon arc
formed by EP subducting to PSP due to igneous rocks with a high
ferromagnetic property. The other high anomalies appear over
Ryuku Arc and Gagua Ridge, which are igneous structures. Rela-
tively low anomalies were found in Okinawa Trough and West
Philippine Basin that suggest existence of sedimentary rocks. On
Taiwan Island, the positive and negative anomalies were observed
in two geometric basement highs (i.e., PH and KH) and LVF as well
Fig. 4. (a) Curie point depth (Zb) map (+: CPD estimate points; circle: hot springs; triangl
Chelungpu Fault); (b) thermal gradient map derived from Curie point depth map (Curie
conductivity 2.978 Wm�1 K�1).
as basins, respectively. The positive and negative anomalies in
mountain areas show the regional geology resulting from orogeny
and metamorphism.

The Curie point depth (Zb) map of Taiwan (Fig. 4a) shows that
the depth ranged from 17 km in northern Taiwan to 6 km in south-
ern Taiwan. The depths are between the ranges of continent and
island arc areas (Bhattacharyya and Morley, 1965; Okubo et al.,
1989; Tanaka et al., 1999), except for the shallowest part in south-
ern Taiwan. Zb increasing from 9 to 14 km along the E–W direction,
which is similar to the topography relief exception in west-south-
ern CR. High Zb values are observed in KH (15 km), PH (14 km),
LMH (12–13 km), and northern Taiwan (16 km). By contrast,
shallow Zb values are located beneath the southern Central Range
(9–10 km) and southern Taiwan (6–9 km).

The geothermal gradient map of Taiwan (Fig. 4b) was estimated
from Eq. (8). The contours are roughly consistent with the newest
measured geothermal gradient data for Taiwan (Wu et al., 2013).
The higher geothermal gradient areas are all beneath CR and the
eastern side of Taiwan, especially in southern CR and CoR. High
geothermal gradients (from 60 to 72 �C/km) are mainly distributed
in the southwestern and on the eastern side of CR. The highest geo-
thermal gradient (88 �C/km) is at the southern end of Taiwan
Island. Lower geothermal gradient areas are at northern and wes-
tern Taiwan from 36 to 52 �C/km, which is higher than the average
geothermal gradient observed in continents. The shallow Curie
depths (9–12 km) beneath CR and WF with higher thermal gradi-
ent (52–64 �C/km) indicate activity from young orogeny and
plates, resulting in frequent, pronounced temperature change,
especially beneath south CR.

The heat-flow values using Curie point depth for Taiwan
(Fig. 4c) were derived from Eq. (9) with the average thermal con-
ductivity k = 2.978 Wm�1 K�1) calculated from Wu et al. (2013).
The analytical heat-flow results (Fig. 4c) from the Curie point depth
and geothermal gradient are in high agreement with the measured
heat flow map of Taiwan (Fig. 5) (Lee and Cheng, 1986; Lin, 2000),
with regard to the shape of the contours. The high heat flow values
along the eastern side of Taiwan beneath the boundaries of two
plates (LVF) may be produced by the plate activities of collision
and subduction. Comparing Zb with the heat flow values retrieved
e: mud volcanoes; ellipse: Aseismic Zone (AZ); green line: WF boundary; black line:
temperature 580 �C); (c) heat flow map derived from Curie point depth (thermal



Fig. 5. Heat flow map (mW/m2) of Taiwan, redrawn from Lee and Cheng (1986) and Lin (2000).
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from the survey results (Lee and Cheng, 1986; Lin, 2000) yielded a
linear relationship with a correlation coefficient of 0.62 (Fig. 6),
which suggests that Zb is highly related to the heat flow
measurements.

PH in the western continental margin where the pre-Miocene
basement extends from the Penghu Islands to western Taiwan
(Lin et al., 2003) plays an important role in the orogenic evolution
of Taiwan. PH with relatively high Curie point depth (CPD) and low
geothermal gradient, presenting cooler and harder structures as a
stiff crustal obstacle, underlay west-southern Taiwan. It suggests
that PH resists the push from plate collisions to develop the kine-
matics of a fold-and-thrust system in the upper crust located at WF
and CP (Mouthereau et al., 2002). KH is also showing the relatively
cool and hard structures in west-northern Taiwan, although at a
smaller scale. LMH with a high magnetic anomaly (400 nT) and
deep Zb (12–13 km) resulted from rocks with high susceptibility.
The shallow Zb (9 km) and high geothermal gradient (64–72 �C/
km) appearing at south CoR might have been caused by the north
Luzon arc’s inserting under CoR and encountering the Chenggu-
ang’ao igneous rocks underneath. The Zb (6–9 km) in southern Tai-
wan reflects the extremely strong and active thermal activities
with geothermal gradient (68–88 �C/km), which is confirmed by
the distribution of hot springs and mud volcanoes (Fig. 4a) and
geothermal measurements made by Industrial Technology
Research Institute of Taiwan (ITRI) in 2012 using surface well
logging.

The boundaries of WF and CR are along CPD contours (12 km).
The trend of CPD in west-central Taiwan increases toward the west
across the Chelungpu Fault (CLF). The CLF system has been delin-
eated by Wang et al. (2000) from a seismic experiment, as shown
in Fig. 4a along the right border of LMH. CPD variation is found
across the CLF system, with shallower depth in the hangingwall
than in the footwall (Fig. 4a). This means that the geothermal gra-
dient is higher in the hangingwall than in the footwall. Even
though this is a small-scale feature, the geothermal gradient’s
changing along both sides of CLF are close to the pre-Neogene
basement at depths of about 8–10 km (Wang et al., 2002) and
the depth of Qp variation across the fault system (Wang et al.,
2010).

As mentioned by Yen et al. (2009), the high magnetic anomaly
also corresponds to the aseismic zone from seismological observa-
tions (Ma et al., 1996; Lin, 1998) beneath southern CR. The
aseismic zone is within a region of low Vp/Vs, around 1.6 (Kim
et al., 2005; Wu et al., 2007), and a region of high Qp/Qs, around
1.2–1.4 (Wang et al., 2010). The present work also indicated
shallow Curie point depth (9–10 km), high geothermal gradient
(60–64 �C/km), and high heat flow value (200–240 mW/m2) (Lee
and Cheng, 1986; Wu et al., 2013). These results all relate the



Fig. 6. Relationship between Curie point depth from magnetic data and heat flow
data from well measurements. The linear correlation coefficient is 0.62.
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possible extra-heat and dry tectonic structures by plates collision
and subduction (Lin, 2000; Yamato et al., 2009). The CPD map
shows the parallel strikes along the topography and geological
zone (LVF) in eastern Taiwan. The suture belt between PSP and
EP shows shallow CPD (10–11 km) with higher geothermal gradi-
ent and higher heat flow values that indicate violent plate activity.
7. Conclusions

The integrated and corrected magnetic anomaly maps (Fig. 2)
were modified by land and oceanic data combination. The Curie
point depth (Zb) was estimated by spectral analysis of magnetic
anomaly data of Taiwan and its vicinity. The present result was
compared with the tectonic and heat flow data. The Zb map
(Fig. 4a) shows the Curie point depth of Taiwan from 6 to 17 km.
The Curie point depth indicates the bottom depth of magnetic
sources and reflects the thermal gradient and the observed heat
flow data. The thermal gradient map of Taiwan (Fig. 4b) shows that
the thermal gradient varies from 36 �C/km to 88 �C/km. Comparing
the Curie point depth map with the heat flow map of Taiwan
(Fig. 6), the linear relationship between magnetic data and heat
flow survey had a correlation coefficient of 0.62. High heat flow
values were observed at the boundaries of continent-arc regions
in eastern Taiwan and in geological thermal areas at southern
Taiwan where Curie point depths are shallow, whereas deep Curie
point depths are located at two geometric basement highs (PH and
KH) in western and northern Taiwan where thermal gradients and
heat flows are low. The results show that the Curie point depths of
Taiwan are shallower than about 11 km at mud volcanoes, geo-
thermal areas, and plate activity boundaries and 13–16 km at older
and cooler continental edges.
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