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Abstract – In this study, we investigated the quasi-periodicity of large avalanches using a new
modification of sandpile models, i.e., the long-range connective sandpile (LRCS) model. The LRCS
model considers the random distant connection between two separated, instead of neighboring,
cells and shows interesting precursory behavior before large avalanches. We explore the statistics
of recurrence intervals between large events and find a strong dependence on the size L of the
sandpile. In the LRCS model, the average recurrence interval W of large avalanches follows the
relationship W ∝ L2.07. Having the recurrence intervals of many earthquake fault systems around
the world, we propose an empirical rule between those intervals and the corresponding earthquakes’
magnitudes and provide evidence of the quasi-periodic behavior of natural earthquakes.

Copyright c© EPLA, 2014

Introduction. – For natural earthquake fault systems,
the quasi-periodicity remains an open issue and has great
societal importance. Large earthquakes are not peri-
odic; however, they could be quasi-periodic. A typi-
cal example showing quasi-periodicity is in the Parkfield,
California area. The San Andreas Fault is the primary
boundary between the Pacific and the North American
plates, and the displacements associated with it are dis-
tributed over many fault segments. Studies on the San
Andreas Fault have led to the conception of the charac-
teristic earthquake model. The earthquake sequence oc-
curred in the Parkfield segment of the San Andreas Fault
in 1857, 1881, 1901, 1922, 1934, and 1966. This is an ex-
cellent example of a moderate characteristic earthquake
with an average recurring interval of 22 years [1]. These
earthquakes repeat with similar features, including fault-
ing mechanisms, epicenter locations, magnitudes, seismic
moments, rupture areas, and southeast rupture propa-
gations. The Parkfield earthquake sequence has given
seismologists an opportunity to test the applicability of
recurrence models in regions characterized by recurring
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moderate-sized earthquake. Bakun and Lindh [1] thus
predicted in 1985 that the next moderate Parkfield earth-
quake after 1966 would occur around 1988 and not later
than 1993. The earthquake, however, did not occur within
the predicted timescale. Surprisingly, in September 2004,
an earthquake occurred in Parkfield with comparable mag-
nitude. There was much debate about whether the event
that occurred in 2004 was the expected characteristic
earthquake and, if so, why it happened 11 years later. We
present in this study an answer to this important issue
about earthquake recurrences.

Sandpile dynamics and self-organized criticality (SOC)
are exhibited in many natural and social phenomena,
including earthquakes, forest fires, rainfalls, landscapes,
drainage networks, stock prices, and traffic jams. Since
Bak et al. [2,3] introduced the original nearest-neighboring
sandpile model, various numerical and analytical stud-
ies of modified sandpile models have been the subject of
much research (e.g., [4–12]). Among these approaches, the
annealed random-neighbor sandpile models in which an
avalanche can propagate within the system were first pro-
posed by Christensen and Olami [5] and then extensively

40003-p1



Ya-Ting Lee et al.

Fig. 1: (Colour on-line) The power-law frequency-size distribu-
tions of avalanches for the original Bak-Tang-Wiesenfeld–type
sandpile (red circles) and the modified long-range connective
sandpile (blue crosses) models. The power-law distribution
with a slope of 1 (diagonal line) can fit the data from the
original sandpile model and the modified long-range connec-
tive sandpile model with variable Pc [12].

studied on a long-range connected (small-world) network
by de Arcangelis and Herrmann [8], Lahtinen et al. [10],
and Chen et al. [11,12].

Long-range connective sandpile model. – We pre-
viously proposed a long-range connective sandpile (LRCS)
model by introducing randomly remote connections be-
tween two separated, instead of neighboring, cells [11–15].
For a square lattice of L by L cells, we randomly throw
sand grains, one at a time, onto the grid. In the orig-
inal Bak-Tang-Wiesenfeld (BTW) sandpile model, once
the total amount of accumulated sand on a single cell
reaches the threshold amount of four, the sand will either
be redistributed to four adjacent cells (the nearest neigh-
bors) or fall off the edge of the grid. Our modified LRCS
model differs from the BTW model in terms of releasing
toppled grains to the four nearest-neighboring cells. The
modified rule of random internal connections is similar to
the implementation of Watts and Strogatz [16]. For any
particular cell, when the accumulated grains exceed the
threshold and redistribution occurs, one of the original
nearest-neighbor connections has a long-range connective
probability Pc of being redirected to a randomly chosen,
distant cell. The original connection is replaced by a ran-
domly chosen mesh that may be far from the toppling
cell. For a scheme of the distribution process of the LRCS
model, please refer to our previous studies [12–15].

We have additionally assumed that Pc depends strongly
on any topographic changes induced by the last event,
which is defined as Pc(t + 1) = [ΔZ(t)/αL2]3. ΔZ(t) and
L2 are topographic changes due to the latest event and the

Fig. 2: (Colour on-line) An LRCS simulation for a square lat-
tice of 150 by 150 cells. The blue line represents the dynamic
variable 〈Z〉(t) for the average topographic height of the board
in the LRCS model. The green and red lines are the Hurst
exponent H for avalanche sizes and the power-law exponent
B for the frequency-size distributions, respectively. The error
bars show the 95% confidence intervals. The time occurrences
for avalanches with s > 103.5 (black bars) are also shown [15].

system size, respectively. The coefficient α functions as a
normalization constant, which makes the value of the con-
nective probability Pc range between 0 and 1. The LRCS
model after a large avalanche can thus induce a high prob-
ability of long-range connections, which is motivated by
the fact that a more active earthquake fault system will
have a higher likelihood of establishing long-range con-
nections due to many factors, such as fault activity, the
change in pore fluid pressure, or the dynamic triggering
of seismic waves. For example, a larger earthquake gen-
erates a more radiated energy that is carried by seismic
waves; therefore, it is more capable of dynamically trig-
gering remote tremors that are far from the main shock.
In those remotely triggered cases, stress perturbation due
to seismic waves is considered to be the immediate cause
of triggered events [17,18]. Figure 1 shows the power-
law frequency-size distributions of avalanches for the orig-
inal BTW sandpile and our modified LRCS models [12].
Overall, both models have similar power-law frequency-
size distributions and mimic the Gutenberg-Richter law
of real-life earthquakes. By using a self-adapted probabil-
ity threshold Pc for a remote connection, the self-adapted
LRCS model demonstrates a state of intermittent crit-
icality [19–21] in which the sandpile intermittently ap-
proaches and retreats from the critical state (fig. 2). In the
LRCS model with a self-adapted Pc, the dynamic variable
for the spatially averaged amount of grains on board,
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Fig. 3: (Colour on-line) The probability distribution of the
scaled intervening intervals for large avalanche events in the
LRCS models with L = 100, 200, and 400.

〈Z〉(t) = (
∑L2

i=1 Zi(t))/L2 (blue line in fig. 2), often favors
smaller values by large events (black bars in fig. 2). The
large fluctuation in 〈Z〉(t) is an important feature mimick-
ing the intermittent criticality [19–23]. Large avalanches
are then followed by a period of quiescence and a new ap-
proach toward the critical state [12–14]. This process is
similar to the dynamic process of the earthquake fault sys-
tem, which repeats by reloading elastic strain energy and
rebuilding correlation lengths towards criticality and the
next large event [22–24]. For more details about the LRCS
model, we refer readers to our previous papers [12–15].

Quasi-periodicity of large avalanches in the
LRCS model. – Figure 3 shows the frequency distri-
bution of the recurrence intervals between two successive
large avalanche events in the LRCS models with various
system sizes, L = 100, 200 and 400. A large avalanche here
is defined as an event with the toppled size s exceeding
0.99L2, which indicates an event that spreads throughout
most of the sandpile system. The recurrence interval of the
event has been rescaled by the system area L2 so that the
distributions with various L’s can collapse together. An
important feature in fig. 3 is the approximately bimodal
distribution of recurrence intervals. Strikingly, we find a
substantial mode of those rescaled intervals at approxi-
mately 0.25, which indicates that the large events in the
LRCS models with various L’s are quasi-periodically dis-
tributed throughout many realizations. Another mode for
the small values (i.e., less than 0.05) of the rescaled inter-
vals is caused by event clustering, which may be associated
with the foreshock-mainshock-aftershock sequences.

We conjecture that the dynamics of the LRCS model
shows weakly periodic behavior. We have previously
shown that the power-law exponent B of the frequency-
size distribution for the LRCS model exhibits large fluc-
tuation related to large avalanche events [13,14,25]. Also
the Hurst exponent H of the avalanche sizes is consistent

Fig. 4: (Colour on-line) The correlation between sandpile sizes
L and predominant periods Tp obtained from time series of B’s
and H’s. The error bars show the variance of Tp obtained from
ten realizations of the LRCS models for each L from 70 through
400. The insert shows an example of the Lomb spectrum for
a time series of the B values calculated from one LRCS model
with L = 200.

with these results. Figure 2 shows an example of the LRCS
model with L = 150, demonstrating the temporal varia-
tions in the B (red line) and H (green line) values. Gradu-
ally approaching a large event, the B value decreases, and
the H value in the increases. If large avalanches are quasi-
periodic, then the fluctuations in the B and H values will
have periodic behavior.

For calculating the B and H values, we collected a fixed
number of events, thus generating irregularly spaced time
series. An effective approach to examine the periodicity
of the dynamical fluctuation in the LRCS model invokes
Lomb periodograms. Fourier spectrum is a standard tech-
nique to detect the periodicity of a time series with equally
spaced samples, while the Lomb periodogram is used for
cases with irregularly spaced time series data. We used
Lomb periodograms to determine the periodicities for sev-
eral time series of B’s and H’s. A predominant period Tp

in the fluctuations of B’s and H’s can then be detected as
the inverse of the frequency for the peak with the high-
est power spectral value. We found strong evidence that
further supports the quasi-periodic dynamics of the LRCS
model in the Lomb spectra for time series of the B and H
values generated by the LRCS models. An example with
L = 200 can be found in the insert in fig. 4. Most impor-
tantly, fig. 4 shows a strong correlation between Tp and L.
The error bars show the variance of Tp obtained from ten
realizations, each with 1 million iterations of sand throw-
ing, of the LRCS models with L from 70 through 400. It
is reasonable that large avalanches in a larger-sized LRCS
model have, on average, longer recurrence times. However,
such recurrence behavior is not purely periodic (fig. 2).
The strong dependence between Tp and L is exhibited in
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the LRCS models as the scaling of Tp ∝ L2.07, which is
consistent with the rescaled intervals in fig. 3.

The described conjecture can be theoretically formu-
lated and proven to be true. Let the number of toppled
sites during an avalanche be denoted as s and the proba-
bility distribution of s on a L2-sized lattice be denoted as
P (s, L). If P (s, L) follows the finite-size scaling, then it
could be written as

P (s) = s−τG(s/LD), (1)

where τ and D are two scaling exponents and G is a finite-
size scaling function. If we call an avalanche with s ≥ aL2

a large event, then the probability of a large event will be

ΔP =

L2∫

aL2

P (s)ds.

Then

ΔP =

L2∫

aL2

s−τG(s/LD)ds =

LD(1−τ)

L2−D∫

aL2−D

(s/LD)−τG(s/LD)d(s/LD) ∼=

LD(1−τ)

1∫

a

u−τG(u)du, (2)

where
1∫
a

u−τG(u)du is a constant and the approximation

could be reasonable for a D of ∼ 2.
For L values from 100 through 400, the LRCS sim-

ulation generates approximately 40000 events during
100000 iterations of sand-throwing, which is indepen-
dent of L. The inverse of ΔP is therefore easily con-
verted to the average waiting time (iteration) between two
large avalanches. Remember that larger events are of-
ten clustered for the LRCS model (fig. 2), mimicking the
foreshock-mainshock-aftershock sequence. Imagine that
there are NT avalanches in a cycle of large events and
that among these, Na events larger than aL2 are clus-
tered. Therefore, ΔP = Na/NT . We have noted that
the number of clustered large events scales with L. The
recurrence period of large events can be then rewritten as

Tp = t × NT = t × Na/ΔP ∝ Lm/LD(1−τ) = LD(τ−1)+m,
(3)

where t, roughly equal to 2.5 in the LRCS models, is the
average iteration number for one avalanche and m is the
scaling exponent between Na and L. The values of D and
τ can be obtained from the means of the moment anal-
ysis for the LRCS models and are 2.02 and 1.79, respec-
tively. Figure 4 thus suggests that m nearly approaches
0.48, which is consistent with the distribution shown is

Fig. 5: (Colour on-line) The correlation between recurrence
times and magnitudes for natural earthquakes [1,24–28]. The
trenching data of faults are used primarily to identify the pa-
leoevents, particularly for those cases with magnitudes larger
than 7.

fig. 3. Note that the number of clustered large events for
L = 400 is nearly twofold larger than the mainshock num-
ber and is comparable for L = 100. Nevertheless, we have
a theoretical foundation for the L dependence of the re-
currence intervals of large avalanches in the LRCS models.
The recurrence interval can be related to the size of LRCS
system which is then associated with and the magnitude
of the so-called characteristic event.

Discussion and conclusions. – Could we find a sim-
ilar size/magnitude dependence for the recurrence times
of natural earthquake fault systems? In addition to the
Parkfield, California earthquake sequence, which has a
magnitude of ∼ 6.0 and a recurrence interval of ∼ 22
years [1], Uchida et al. found that earthquakes with mag-
nitudes of ∼ 4.9 that occurred on an interplate asperity
near Kamaishi, Japan have a strong periodicity of ∼ 5.5
years [26]. By using the paleoearthquakes observed in
the trenching data for the magnitude 7.3 Chi-Chi, Tai-
wan earthquake, Chen et al. [27] suggested an average re-
currence interval of ∼ 700 years. The recurrence time
for the magnitude 9.0 Cascadia, Canada earthquake is
approximately 500 years [28]. Other cases include the
Wasatch fault zone in Utah [29] and the Sichuan-Yunnan
fault zone in China [30]. The average recurrence times of
the Wasatch and Sichuan-Yunnan fault zones are ∼ 340
and ∼ 410 years, respectively. The events in both ar-
eas have comparable magnitudes of ∼ 7.2. For natural
earthquake fault systems, paleoearthquakes observed in
the trenching data are the only way to calculate the re-
currence periods for large characteristic events, but this
approach gives great uncertainty. Limited instrumental
data are available due to the (fortunate) lack of repeated
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experience with these catastrophic events. However, for all
the above mentioned cases, fig. 5 does show a satisfactory
correlation between recurrence times and magnitudes, i.e.,
Tp ∝ M0.549. This power-law relationship with a scaling
exponent of 0.549 differs from the value we determined
with the LRCS model. This exponent must be trans-
formed to obtain the exact scaling between the recurrence
times and the linear dimension of natural earthquake fault
system, which could be complicated because of fault ge-
ometry. This issue is beyond the scope of this study and
will be examined in future work.

Our motivation of the long-range connection in the
LRCS model adopted the random wiring of the small-
world network. The difference is that the probability of
long-range connection in the small-world network system
is purely random. Instead, the probability of long-range
connection in our LRCS model depends on the size of the
previous event. As shown in this study, the LRCS model
represents a system having a quasi-periodical behavior.
In fig. 2 the variation of B-values, H-values and the dy-
namic variable for the average topographic height of the
board are showing the quasi-periodicity with large events.
We suggest that the quasi-periodical behaviour should be
caused by the size dependence of the long-range connec-
tion probability. For large events which can occur long
before or after the predominant periodicity. The Park-
field earthquake in 2004 is likely a quasi-periodic case.
The 2004 Parkfield event could be the expected charac-
teristic earthquake, and its late occurrence is not surpris-
ing in view of the quasi-periodical LRCS system. The
LRCS model may be a new physical model of earthquakes
and differs from time-dependent and slip-dependent mod-
els [31,32]. In the LRCS model, the gross cumulative
energy before a large event can be changed as can the
energy released during a large event (〈Z〉(t) in fig. 2).
Such variance, together with the long-range connection
effect, may be related to biases in the recurrence intervals
of large characteristic avalanches. The determination of
the size/magnitude dependence of the recurrence times for
large earthquakes is important. A larger earthquake needs
longer preparation time to re-accumulate energy before its
reoccurrence. From the point of view of risk prognosis,
the occurrence probability through time of characteristic
events is an important issue to study. We are still far from
the accurate prediction of earthquakes, although most of
the rescaled recurrence intervals of large avalanches are
∼ 0.25 (fig. 3). For now, to measure the probability of
characteristic earthquakes at any given time is still a chal-
lenge. The uncertainties of paleoseismic dating, and the
quantification of rupture dimension, fault segmentation
and magnitude are important effects on the prediction of
earthquakes. Many studies about statistical analysis and
statistical models of earthquake forecasting are still ongo-
ing (e.g., accelerating moment release (AMR), character-
istic earthquakes, variation in b-value, activation model,
and Pattern Informatics (PI) index), those studies have
seen significant progress in the last ten years [33–35].
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