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Tornillos are quasi-monochromatic seismic signals with a slowly decaying coda that are observed near
active volcanoes and geothermal areas worldwide. In this work a lumped parameter model describing
the tornillo source process as the self-oscillations of fluid filling a cavity is investigated. A nonlinear
ordinary differential equation is derived that governs the behavior of the model taking into account vis-
cous and nonlinear damping as well as the reaction force of the fluid inside the cavity. This equation is
numerically integrated both for different cavity sizes and different fluids of volcanological interest, such
as gas (H2O + CO2, H2O + SO2) and gas-particle mixtures (ash-SO2, water droplets-H2O). This cavity model
predicts that when the filling fluid is a mixture of ash and SO2 the signal duration will increase until the
mixture becomes enriched in ash and then the duration exhibits a decrease. Additionally, the damping
coefficients (=1/2Q) of the synthetic signals are estimated in the range between 0.002 and 0.014. Both
results agree well with the temporal variation of tornillos duration and the estimated Q quality fac-
tors/damping coefficients observed at Galeras volcano. In the context of the cavity model, tornillo fre-
quency variations from 4 Hz to 1 Hz observed prior to eruptions can be interpreted as the result of
fluid composition changes as more ash particles are added. This is in agreement with the observation that
gas accumulation at Galeras was a steady rather than an episodic process and that tornillos were most
likely triggered after a fluid pressure threshold had been exceeded.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Tornillos represent an enigmatic class of quasi-monochromatic
seismic signals with an extended coda that are observed near
active volcanoes and geothermal areas. Such signals are quite dis-
tinct from the usual long-period events that are also observed at
volcanoes but have shorter coda and may also contain more fre-
quencies. The word ‘tornillo’ is the Spanish word for screw and
was used to describe extended coda signals recorded during the
1992–1993 eruption of Galeras volcano, Colombia. The choice of
this word was motivated by the resemblance of these signals with
the profile of a screw thread (Narváez et al., 1997) (Fig. 1). Even
though similar events with slowly decaying coda have been recog-
nized previously in a number of Japanese volcanoes (Hamada et al.,
1976), the observations made at Galeras were the first detailed
ones resulting in the identification of 13 different types of tornillos.
These observations were prompted by the fact that ash eruptions
at Galeras were almost always preceded by such signals highlight-
ing their potential value for eruption forecasting (Narváez et al.,
1997; Gómez and Torres, 1997; Gómez et al., 1999; Seidl et al.,
1999). Tornillo events have been reported ever since in several
other volcanoes worldwide including Kelut in Indonesia (Lesage
and Surono, 1995), Tongariro in New Zealand (Hagerty and
Benites, 2003), Mt Griggs in Alaska (De Angelis, 2006) and Vulcano
in Italy (Milluzzo et al., 2010) among others.

The extended coda of the tornillo signals has been found to span
in duration from few tens to hundreds of seconds while systematic
variations in their duration were observed before ash eruptions at
Galeras. Observed dominant frequencies are the same at all record-
ing stations, a characteristic which suggests that these frequencies
reflect a source effect. A less mentioned characteristic of these sig-
nals is their relatively small amplitude that limits the maximum
distance at which they can be clearly observed to about 4 km or
less (Table 1). Additionally, amplitude modulation has been fre-
quently observed in tornillo signals and it can be explained either
as the superposition of two close eigenfrequencies of a resonator
source, or the superposition to the signal of noise having very sim-
ilar frequency (see Milluzzo et al. (2010)). In general, the tornillo
frequency content lies in the band between 1 and 16 Hz exhibiting
either a single-frequency peak spectrum or multiple peaks that are
usually not part of a harmonic series. Efforts to locate the tornillo
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source have used traditional travel-time inversion methods when
the signal had an impulsive onset (Molina et al., 2004), as well as
waveform modeling techniques (Kumagai et al., 2002; Nakano
et al., 2003). In most cases the source was located near the main
eruptive crater of each volcano at a depth range of a few hundred
meters.

One model that has been often used for explaining the source
properties of long-period events and tornillos is that of the reso-
nating fluid-filled crack (Chouet, 1996 and references therein). In
this model resonance is induced by a pressure transient applied
over a small area of the crack wall and the modes that are excited
depend on factors such as the extent of the crack surface, time his-
tory of the transient and boundary conditions. More importantly,
the crack model predicts that long-lasting oscillations of the crack
are possible when there is a large impedance contrast between the
fluid and the solid implying the presence of high gas content. Sev-
eral studies that have measured quality factors for tornillo events
have explained the large values obtained (>100) based on the crack
model predictions, invoking a fluid composition that consists of gas
and ash/liquid particles (Kumagai et al., 2002; Hagerty and Benites,
2003; Molina et al., 2004; Nakano and Kumagai, 2005; Milluzzo
et al., 2010; Alparone et al., 2010). On the other hand, Seidl and
Hellweg (2003) argued that tremor and tremor-like signals (such
as tornillos) do not provide a window into the volcano conduit sys-
tem, but rather illuminate small elementary volumes where oscil-
latory fluid movement takes place. The authors suggested a
physical model based on the free vibrations of a fluid-filled cavity
excited by a pressure pulse. However, their analysis only consid-
ered a linearized version of the model and investigated its behavior
only for a particular case of steam-CO2 mixture.

In this work, the fluid-filled cavity model for tornillo excitation
is re-examined by incorporating nonlinear effects and investigat-
ing the characteristics of the excited acoustic oscillations. First, a
description of the general properties of this cavity oscillator is
given followed by the identification of two nonlinear effects,
namely nonlinear damping and the reaction force of the fluid
inside the cavity. The ordinary differential equation describing this
lumped parameter model is integrated numerically utilizing differ-
ent cavity sizes and fluid types. The characteristics of the cavity
model oscillations (duration, frequency, quality factors, reduced
displacement) are then compared to those of tornillos at Galeras
in order to see to what extent they can reproduce the observations.
Fig. 1. Velocity waveforms of a tornillo event recorded by a three component short-p
Amplitudes are in arbitrary units.
Finally, the discussion focuses on the issue whether the cavity
model has a physical basis that is supported by observations at
Galeras but also at other volcanoes where tornillos have been
observed.

2. The fluid-filled cavity oscillator

2.1. General properties

A cavity oscillator (also known as Helmholtz oscillator) is a
tube-cavity system where a slug of fluid inside the tube moves in
an oscillatory motion (Fig. 2). It should be noted that the word
‘slug’ is used in this work not to describe a large gas bubble as is
usually done in volcanological studies, but just to denote the quan-
tity of fluid residing in the tube. For simplicity the cavity is here
represented having a cylindrical shape with radius R and height
h, connected to a tube that has length L and radius r. When the lin-
ear dimension of the oscillator is much smaller than the oscillation
wavelength, two assumptions can be made: (a) the pressure inside
the cavity is spatially uniform, and (b) the slug of fluid in the tube
moves in phase as a whole. Under these assumptions the oscillator
system can be considered as a compact source where the pressure
inside the cavity is everywhere the same and the approximation of
incompressible fluid flow can be applied (Rienstra and Hirschberg,
2004).

The cavity oscillator is subject to energy dissipation in the form
of viscous losses due to the movement of fluid near the walls of the
tube. The dissipation can be quantified by use of the damping coef-
ficient d in which case the viscous force will be equal to 2dm _x
where m is the mass of the slug of fluid in the tube and _x its veloc-
ity. Howe (1976) developed the theory of excitation of a fluid-filled
cavity by external disturbances that were located arbitrarily close
to the orifice of the tube. The author found that the damping coef-
ficient due to viscous losses can be approximated as

d ¼
ffiffiffiffiffiffiffi
x0
p

r
ffiffiffi
2
p ½

ffiffiffi
m
p
þ

ffiffiffiffi
j
p
ðc� 1Þ� ð1Þ

where c is the specific heat ratio of the fluid, m its dynamic viscosity
in m2/s, j is the thermometric conductivity defined as j ¼ k=qf cp

with k being the thermal conductivity of the fluid, qf its density
and cp its specific heat under constant pressure. The quantity x0

symbolizes the natural frequency of the fluid-filled cavity, given by
eriod sensor installed at the area of the Tatun Volcano Group, northern Taiwan.



Table 1
List of stations distance from the active craters where tornillos were observed ðdobsÞ and distances of the furthest station ðdmaxÞwhere the tornillo signal was either not recorded at
all or signal-to-noise ratio was very small. The column f signifies the range of dominant tornillo frequencies at each volcano.

Volcano Region dobs (km) dmax (km) f (Hz) Reference

Kelut Indonesia 0.5 7 5–6 Lesage and Surono (1995)
Galeras Colombia 4 5 0.9–3.5 Gómez and Torres (1997)
Tongariro New Zealand 2.5 7 1.2–3.8 Hagerty and Benites (2003)
Mt Griggs Alaska 4 7 2.5 De Angelis (2006)
Vulcano Italy 0.5 2 4–16 Milluzzo et al. (2010)

Fig. 2. Cartoon illustrating the geometry of the cylindrical tube-cavity oscillator.
The cavity has a height h and a radius R while its cross-section is S ¼ pR2. The tube
has a length L and radius r while its cross-section is equal to s ¼ pr2. The
mechanical analog of this oscillator is also shown as a spring (fluid inside the cavity)
and an attached mass (fluid slug in the tube) while viscous losses exist near the
walls of the tube. Also shown are the forces involved, namely Fr the reaction force of
the fluid inside the cavity, Fv the viscous force near the walls and Fd the nonlinear
damping force exerted on the fluid in the tube.
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x0 ¼ c
ffiffiffiffiffiffiffiffi

s
LeV

r
ð2Þ

where c is the speed of sound for the fluid, s is the cross-section of
the tube, V is the volume of the cavity and Le is a quantity termed as
‘effective length’ that is equal to (Rienstra and Hirschberg, 2004)

Le ¼ Lþ 16r
3p

ð3Þ

The physical meaning of the effective length stems from the inertia
of the acoustic flow at both ends of the tube, in the sense that the
slug moves within a length that is larger than the length L of the
tube. The term 16r=3p is therefore an appropriate correction added
to the original length value.

2.2. Nonlinear effects

The mechanical analog of the fluid-filled cavity is that of a mass
suspended from a spring, where the mass represents the fluid slug
and the spring corresponds to the fluid residing within the cavity
(cf. Fig. 2). In every cycle of oscillation the fluid in the cavity works
as an elastic spring pushing the slug towards the tube. The elastic
properties of the cavity fluid can be calculated after its thermody-
namic state is considered, as described by changes in pressure and
volume variables. Assuming that the process is adiabatic and P0 is
the initial fluid pressure in the cavity, then the relative change of
pressure P due to a small displacement x of the slug can be
expressed as a series expansion (Boullosa and Bustamante, 1992)
DP
P0
¼ � c

sx
V
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Taking into account that P0 ¼ qf c
2=c the reaction force Fr exerted by

the cavity fluid on the slug can be written as

Fr ¼ DPs ¼ �
qf c2s2

V
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The previous equation shows that the reaction force is a nonlinear
function of the slug displacement x. The coefficient of the nonlinear
term is inversely proportional to the volume V, therefore it will
become more significant for smaller cavities.

Another effect that has to be considered is that of variations in
mechanical energy once the configuration of the flow is sharply
changed. This occurs in the cavity oscillator since the fluid moves
from a smaller conduit cross-section to a larger one and vice versa.
The dynamic pressure of the fluid can give a measure of this effect
and it may be expressed through a formula given by (Batchelor,
1967)

Dp ¼ 1
2
qf _x2 1� s

S

� �2
ð6Þ

where S is the cross-section area of the cavity. If Dp is multiplied by
the cross-section of the tube, the corresponding force that is every
time exerted on the slug can be obtained

Fd ¼ Dps ¼ 1
2
qf ns

� �
_x2 ð7Þ

where the expression 1� s
S

	 
2 has been replaced by the variable n.
This force depends on the velocity of the slug therefore it can be
characterized as a damping force. Furthermore, since it is expressed
as a nonlinear function of _x hereafter it will be referred to as ‘non-
linear damping’ to distinguish it from the linear one. Nonlinear
damping reflects increases and decreases of dynamic pressure as
the fluid slug gains or loses kinetic energy.

2.3. Governing equation and self-oscillation mechanism

The equation of motion for the tube-cavity oscillator is derived
in Appendix A and the nonlinear ordinary differential equation that
is obtained is

€xþ 2d _xþ n
2Le
j _xj _xþ c2s

LeV
x� 1

2
ðcþ 1Þ s

V

� �
x2

� �
¼ 0 ð8Þ

where €x is acceleration and the quantity c2s=LeV is equal to the
square of the natural frequency of the oscillator (x2

0). While linear
damping is always related to energy dissipation due to viscous
losses, nonlinear damping may be related to either energy loss or
gain as mentioned previously. For this reason the slug velocity in
the nonlinear damping term has been substituted by the product
j _xj _x so as to take into account the sign of the velocity. Nonlinear
damping will become positive when the fluid moves from the tube
towards the cavity. In this case the slug is doing work against the
pressure gradient and therefore loses energy. When the reaction
force pushes the slug towards the tube its kinetic energy increases



Fig. 3. Diagram showing the variation of the linear damping coefficient as a
function of the tube’s radius r, assuming that the fluid filling the cavity is pure
steam (H2O). The two curves correspond to two different cavity sizes as shown at
the top right hand corner of the plot.
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again and the nonlinear damping becomes negative. At this
instance, the pressure inside the cavity becomes lower whereas
near the orifice it becomes higher and the slug moves back towards
the cavity starting a new cycle of oscillation.

The equation of motion is formulated as a homogeneous ordin-
ary differential equation since the oscillatory motion of the slug is
not regulated by some external driving force, but rather synchro-
nizes with the reaction force of the fluid inside the cavity. The term
‘self-oscillation’ can be used to describe such a behavior where the
oscillation itself controls the phase with which the input of energy
acts on it (for a recent review see Jenkins (2013)). This is com-
pletely different from the well-known phenomenon of forced res-
onance where the input is externally regulated through a driving
force (such as F0 cos xt) and generates a maximum amplitude of
oscillation when the driving frequency is tuned to match the nat-
ural frequency of the oscillator. It is interesting to note that self-
oscillation is often misinterpreted as forced resonance even in pop-
ular physics textbooks (see Billah and Scanlan (1991)). Self-oscilla-
tion is usually the result of an instability of the linearized equation
of motion for perturbations around an equilibrium, resulting in an
oscillation whose amplitude grows exponentially with time until
growth is inhibited by nonlinear effects (Jordan and Smith,
1987). This shows that rather than being mathematical curiosities,
nonlinearities have a strong effect on the solutions of ordinary dif-
ferential equations even when their magnitude is small.
3. Model behavior

The behavior of this nonlinear oscillator will be analyzed by
numerically integrating its ordinary differential equation using
an implicit Runge–Kutta method (e.g. Hairer and Wanner, 2010)
subject to the following initial conditions: t ¼ 0; x ¼ 0 and
_x ¼ v in. These conditions imply that a pressure variation originat-
ing near the orifice of the tube transfers momentum to the slug.
The flow velocity towards the orifice is equal to the product of
the speed of sound in the fluid c and the Mach number M of the
flow. However, it has been shown experimentally that this flow
velocity decreases by a factor / ¼ 0:35 when the flow enters a nar-
row tube (James et al., 2006). The initial velocity of the slug will be
v in ¼ /� c �M, where in order to fullfil the condition of incom-
pressible flow the Mach number is set to a value significantly smal-
ler than unity (M ¼ 0:01). Even though this is an approximate way
to estimate v in, it should be noted that the choice of initial velocity
does not affect the signal properties presented in later sections, but
only the onset part of the synthetic waveform and its maximum
amplitude.

As stated earlier, the linear dimension of the cavity (Lþ h) is
limited by the fact that it should be much smaller than the wave-
length of the pressure oscillations in the fluid. This means that for
the fluids and frequency range (1–20 Hz) dealt with here this
wavelength can vary from a few to tens of meters. Therefore the
vertical length of the cavity is taken as h ¼ 0:5 m and the length
of the tube as L ¼ 0:1 m. Two radius values are considered for
the horizontal dimension of the cavity, one for a small cavity
(R ¼ 0:35 m) and another for a larger one (R ¼ 3 m). In the former
cavity it is expected that the nonlinear reaction force will be more
significant due to the small volume involved, while in the latter
one the nonlinear damping will be more influential due to the large
difference in area cross-section for the tube and the cavity. The lin-
ear damping coefficient is inversely proportional to the tube’s
radius signifying that a small radius will contain boundary layers
of comparable thickness to r and therefore viscous losses will
increase. For example, if d is calculated for steam (H2O) as a func-
tion of r and for the two cavity sizes that are considered here, vis-
cous losses increase significantly when r is smaller than 0.05 m
(Fig. 3). In order to avoid strong damping the radius of the tube
is taken as r ¼ 0:07 m which is a value reflecting small but not neg-
ligible viscous losses for both cavities (d = 0.1–0.3).

The slug displacement time series is calculated for different
fluid compositions as the volume fraction of H2O in gas mixtures
and gas weight fraction in misty/dusty gases is increasing. The
total signal duration, frequency of the dominant peak in the spec-
trum and the quality factor Q are then derived from the synthetic
waveforms. In this study the quality factor is estimated as (Aki
and Richards, 2002)

Q ¼ f
Df

ð9Þ

where f is the peak frequency value and Df is the bandwidth of the
peak measured at one half its amplitude. The variation of these
three parameters as a function of fluid composition is then consid-
ered and compared with observations. Figs. 4 and 5 show represen-
tative examples of synthetic waveforms for different fluid mixtures
and for the two different values of R.

The kinds of fluid considered here cover the ones found in
hydrothermal systems and volcanic conduits under a lithostatic
pressure of 5 MPa. These fluids are gas mixtures such as H2OþCO2

and H2OþSO2, as well as dusty and misty gases which are mixtures
of SO2 with fine ash particles and H2O with water droplets respec-
tively. In each case the fluid properties (viscosity, density, sound
speed, specific heat ratio) are calculated following Kumagai and
Chouet (2000) using the thermodynamic parameters compiled by
the same authors. Gas mixtures are assumed to behave as ideal
gases and there is no thermodynamic equilibrium between the
gas and the liquid/solid phases. The temperature for the gas and
the ash-gas mixtures is taken equal to 1200 K while for H2O-water
droplets mixture this value is taken as 584 K.

3.1. Gas mixtures

Total signal duration for both gas mixtures considered show
only small variations as the volume of H2O is increasing and
range between 6 and 10 s for the small sized cavity while this
range becomes 10 and 20 s for the large one (Fig. 6). The behav-
ior of the dominant signal frequency seems to depend on the
size of cavity radius. For the small cavity, the dominant signal
frequency for both gas mixtures exhibits a peak at about 19 Hz
for 0.3–0.4 volume fraction of H2O. When the volume fraction
becomes smaller or larger than this, dominant frequencies shift
steadily to lower values and for fractions larger than 0.7 the
two gas mixtures attain very similar frequency values. This is
different from the case of a larger cavity where the dominant
frequency for both mixtures varies in an almost linear fashion



Fig. 4. Synthetic waveforms generated after integrating numerically the nonlinear ordinary differential equation (see text for more details) assuming that the fluid filling the
cavity is a gas mixture. The cavity size, kind of gas mixture and volume fraction w of H2O is shown at the right of each plot.

Fig. 5. Same as in Fig. 4 but this time the fluid filling the cavity is a gas-particle mixture. The symbol x is used to represent the gas weight fraction of SO2 or H2O in each plot.
For clarity only the first 19 s of each waveform is shown.
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as a function of volume fraction in the range between 4 and
10 Hz. In either case it is evident that the H2O + CO2 exhibits
higher dominant frequencies than the H2O + SO2 mixture when
the volume fraction of H2O is smaller than 0.4. The quality fac-
tors of the synthetic signals show a greater variability for the
small cavity, since they assume values between 4 and 45 while
there is a decreasing trend for both gas mixtures as the volume
fraction of H2O increases. Fluctuations are smaller for the large
cavity and Q values vary over a limited range between 28 and
45 showing an increase as the volume fraction becomes larger.
Such quality factors are similar in magnitude to those obtained
for the fluid-driven crack model for different gas mixtures by
Kumagai and Chouet (2000). Amplitude modulation effects can
be seen in synthetic signals corresponding to the small cavity
for 0.3–0.4 volume fraction of H2O (cf. Fig. 4).
3.2. Gas-particle mixtures

As in Kumagai and Chouet (2000) the sound speeds and density
for the different gas-particle mixtures are calculated for volume
fractions of pure gas larger than 0.5, which corresponds to fluids
with more than 2 wt.% of pure gas at a temperature of 1200 K. It
is also assumed that the radius of the individual particles (either
ash or water droplets) is 1 lm. Signal durations for either the small
or large cavity exhibit a trend of decreasing values as the gas
weight fraction increases (Fig. 7). Largest durations are observed
for dusty gas mixtures with maximum values of 55 and 118 s cor-
responding to the small and large cavity respectively. Mixtures of
ash and SO2 seem to exhibit larger signal durations than the mix-
tures of H2O and water droplets. Also there is a small decrease in
duration when the gas weight fraction in dusty gas falls below



Fig. 6. Diagrams summarizing the signal characteristics when the fluid in the cavity is a gas mixture. Left panel: variation of signal duration, dominant frequency and quality
factor as a function of volume fraction of H2O for a cavity with radius R ¼ 0:35 m. Right panel: the same for a cavity with radius R ¼ 3:0 m.
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0.2 and the mixture becomes rich in ash particles. Similar to the
case of gas mixtures, the behavior of dominant frequency is differ-
ent between small and the large cavity. For the small cavity both
mixtures reach a maximum dominant frequency (18–19 Hz) for
low gas weight fractions (0.2–0.3), while for larger fractions fre-
quencies decrease steadily. The two mixtures also behave differ-
ently when the gas fraction becomes larger than 0.5; the
frequency of ash-SO2 continues to decrease until it stabilizes to a
value of 1–2 Hz for 0.9–1.0 gas weight fraction. On the other hand,
the frequency curve for the water droplets-H2O reaches a mini-
mum for 0.6 gas weight fraction increasing up to 16 Hz for larger
fraction values. When the cavity becomes large the frequency
increases smoothly for both mixtures from 1 to 7 Hz as the gas
weight fraction becomes larger.

For the small cavity the quality factors mirror the variations in
dominant frequency with the ash-SO2 mixtures exhibiting the
largest values compared to those of water droplets-H2O. An
increasing fraction of SO2 progressively lowers the Q values
enhancing the attenuation of the synthetic signal. Quality factors
for the water droplets-H2O mixtures follow initially the same
trend of decreasing values up to a gas weight fraction of 0.6, how-
ever, after this they increase again up to a value of 60. Amplitude
modulation can also be seen for both types of mixtures when the
gas weight fraction is below 0.5. The quality factors for the large
cavity remain high and do not show the same decreasing trend as
for the small cavity. In the case of ash-SO2 they reach a maximum
value of 180 and then stabilize to a value around 60 for 0.4–0.9
gas weight fractions. An interesting characteristic is that for both
cavity sizes the Q values exhibit a significant drop when the gas
weight fraction falls below 0.2 and is enriched in ash particles.
For the water droplets-H2O mixture the Q values appear almost
constant around 60 for low gas weight fractions fluctuating
between 50 and 140 when the gas contribution becomes higher
than 0.4. These results regarding cavities agree rather well with
those of Kumagai and Chouet (2000) that gas-particle mixtures
inside a crack can cause long-lasting oscillations with Q values
of several hundred.
4. Comparison with observations at Galeras

The eruptive activity of Galeras volcano started during February
1989 when small ash and gas emissions occurred and were fol-
lowed by similar emissions during May of the same year and
August 1990 (Cortés and Raigosa, 1997). These small eruptive epi-
sodes were accompanied by mild seismic activity in the form of
volcano-tectonic and long-period events, as well as volcanic
tremor. At the end of 1990 deformation observations indicated



Fig. 7. Same as in Fig. 5 when the fluid filling the cavity is a gas-particle mixture.
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inflationary behavior accompanied by an increasing number of
long-period events, bursts of volcanic tremor and minor gas emis-
sions. This activity intensified in October 1991 with the emplace-
ment and extrusion of an andesitic lava dome at the base of the
main crater. After November 1991 the long-period seismicity
declined sharply until mid-July 1992 when the first tornillo events
appeared and were followed by an eruption that destroyed the
uppermost part of the dome. Five more vulcanian eruptions
occurred in January, March, April (4th and 13th) and June 1993
of which four of them were preceded by tornillo events. Measure-
ments of SO2 flux using correlation spectroscopy revealed that the
gas emission steadily decreased during the period prior to every
eruption, increasing again afterwards (Fisher et al., 1994; Stix
et al., 1997; Zapata et al., 1997). Such a pattern supports the inter-
pretation that the volcanic conduits were obstructed leading to the
pressurization of the system and to explosive activity. Each erup-
tive cycle between July 1992 and June 1993 was associated with
a series of seismic phenomena that first started with tornillo sig-
nals, then high-frequency but short duration events called ‘maripo-
sas’ followed by explosive activity and a swarm of long-period
events (Cortés and Raigosa, 1997; Zapata et al., 1997; Gil-Cruz
and Chouet, 1997).
4.1. Tornillos waveform characteristics

There are two main physical quantities whose variations have
been studied in detail during the 1992–1993 eruptive activity at
Galeras, namely signal duration and oscillation quality factors.
These observations and their consistency with the cavity model
are summarized as follows:

� Before each eruptive cycle tornillo signals exhibited an increas-
ing signal duration that was followed by a decrease just before
the onset of the eruption (Narváez et al., 1997; Gómez and
Torres, 1997; Gómez et al., 1999). This characteristic has been
highlighted in all studies of tornillos occurring at Galeras during
1992–1993 as a tool to forecast eruptive activity. It is interest-
ing that the cavity model proposed here can reproduce this
observation: when the SO2-ash mixture filling the cavity is
reaching a gas weight fraction of 0.2 (i.e. it is enriched in ash)
the signal duration indeed drops (cf. Fig. 7).
� Gómez et al. (1999) calculated damping coefficients (=1/2Q) for

all tornillos that occurred at Galeras between 1992 and 1995
and found that these range between 0.002 and 0.016. The
lowest and highest Q factors of synthetic tornillos for the large
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cavity filled with ash-SO2 mixture, are 35 and 180 respectively
(cf. Fig. 7). The damping coefficients that correspond to these
values are 0.014 and 0.002 respectively, in good agreement with
the observations.

The previous studies also noticed a temporal variation of the dom-
inant frequency of tornillos, shifting from about 4 Hz and stabiliz-
ing to around 1 Hz prior to each eruption. In the context of the
cavity model this observation can be explained as the result of a
changing fluid composition to a SO2-ash mixture that is enriched
in ash as the eruption is approaching. The frequency of 4 Hz corre-
sponds to a gas weight fraction of 0.7 while for a gas weight frac-
tion of 0.1 the signal frequency becomes about 1 Hz (cf. Fig. 7).
Obviously, these frequency variations can be explained without
invoking any sharp changes in the geometry or size of the cavity.

4.2. Reduced displacement of tornillos

A quantity that is utilized in order to infer the strength of the
seismic source of volcano-seismic signals is that of reduced dis-
placement (Aki and Koyanagi, 1981; Fehler, 1983). It has units of
distance multiplied by displacement amplitude (usually given in
cm2) and can be calculated using the following equation if the
wavefield consists of body waves

DR ¼
A

2
ffiffiffi
2
p d

G
ð10Þ

while if it consists of surface waves the equation becomes

DR ¼
A

2
ffiffiffi
2
p

ffiffiffiffiffiffi
dk
p

G
ð11Þ

where A is the displacement amplitude of the signal, d is the source-
receiver distance, G is the instrument magnification and k is the
wavelength. In order to estimate displacement amplitudes for tor-
nillos the following procedure is used: Narváez et al. (1997) provide
maximum peak amplitudes vp (in lm/s) of tornillos, recorded at
station ‘Cráter-2’ (d ¼ 1.6 km), for each of the four eruptive phases
during 1992–1993 along with their corresponding periods (Table 2).
The amplitude envelope of tornillos at Galeras consists of two parts,
namely an excitation function where the amplitude increases expo-
nentially towards the peak value, and a response function where
amplitudes decay exponentially. In particular, Seidl et al. (1999)
approximated the excitation function of tornillos as

v ¼ vpð1� e�qtÞ ð12Þ

where the coefficient q depends on the rise time tR. From the 13 tor-
nillo types shown in Fig. 3(a-m) of Narváez et al. (1997) the rise
time can be estimated with reasonable accuracy (�1 s) and it is
found to have a minimum value of 2 s and a maximum of 5 s. Eq.
12 is then integrated for these two values and for each value of
vp so as to obtain displacement A. The calculation of instrument
magnification G for each of the observed periods of tornillos is out-
lined in Appendix B. The seismic wavefield of tornillos at Galeras is
quite complicated in part due to the rough topography, however,
Table 2
Summary of maximum peak velocity amplitudes ðvpÞ and corresponding periods T for
tornillo events recorded at Galeras during the four inter-eruptive periods (from
Narváez et al. (1997)). The two columns of reduced displacement DR are estimated for
each period using two rise time ðtRÞ values (see text for more details).

Period vp (m s�1) T (s) (tR=2 s) DR (cm2) (tR=5 s) DR (cm2)

July 1992 23� 10�6 0.8 1.97 4.75

January 1992 31� 10�6 0.8 2.66 6.40

February 1993 27� 10�6 0.4 1.50 3.62

April 1993 10� 10�6 0.6 0.70 1.68
the rather shallow source depth (<1 km) implies it may predomi-
nantly consist of surface waves (Gómez et al., 1999). Taking then
the phase velocity C ¼ 0:9b with shear wave velocity
b ¼ 1500 m=s for wavelength calculation, DR is estimated and the
results are summarized in Table 2.

The question that naturally arises is whether a cavity size of
h ¼ 0:5 m and R ¼ 3:0 m can produce similar reduced displace-
ments as the ones estimated previously. Synthetic reduced dis-
placement sDR can be calculated by assuming a semi-infinite
medium and a wavefield consisting of the fundamental mode of
Rayleigh waves, as (Aki and Richards, 2002; Chouet, 1996;
McNutt and Nishimura, 2008)

sDR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2rðdÞ
8CUI1

s
ð1:23e�0:85 Kz � 0:58e�0:39 KzÞðphR2DPÞ ð13Þ

where rðdÞ is the fundamental mode of the eigenfunction, C is phase
velocity, U is group velocity (here taken as U ¼ C ¼ 0:9b), I1 is the
energy integral, K the wavenumber, z is the source depth and DP
is the overpressure inside the cavity. This equation also assumes
that the moment tensor describing the seismic source is dominated
by a volumetric component resulting in the off-diagonal elements
being equal to zero. The calculations are performed for the three
periods (0.4, 0.6, 0.8 s) of observed maximum amplitudes and three
trial depths (100, 200 and 300 m); shear wave velocity is taken as
b ¼ 1500 m=s while rock density as qs ¼ 2100 kg=m3. Theoretically
overpressure within domes can take values of tens of MPa, in prac-
tice however, leakage of fluids to the surrounding rocks limits con-
siderably its value (Sparks, 1997) therefore here it is assumed that
DP ¼ 1 MPa.

Fig. 8 shows the variation of sDR as a function of distance from
the source for each observed period at each trial depth. The best
agreement between observed and synthetic reduced displacement
can be found for z ¼ 200 m. At this depth and for d ¼ 1:6 km, sDR is
within/close to the range of DR values for observed periods 0.4 s
(sDR ¼ 2:10 cm2) and 0.6 s (sDR ¼ 1:72 cm2). This is not the case
for the observed period of 0.8 s where sDR has a value of
14.86 cm2 that is outside the range of estimated DR. However, if
the source depth is taken as 250 m then sDR becomes 5.20 cm2

which is within the estimated range. As the period of 0.8 s corre-
sponds the maximum amplitude of tornillos during the first two
phases of activity (cf. Table 2), this implies that at that time the
source might have been slightly deeper. Temporal variations of
overpressure from one eruptive phase to the next may also explain
the range of DR values. It is worth mentioning that the sDR curves
show that the 0.8 s period produces very small reduced displace-
ment beyond a distance of 4 km when the depth is less than
300 m. This agrees well with the distance range where tornillos
are usually observed (cf. Table 1). The cavity depth of 200–250 m
derived here corresponds to the lower part of the dome and lies
above the inferred point deformation source (� 350 m) associated
with the extrusion of the dome (Gil-Cruz and Chouet, 1997).

5. Discussion

5.1. What are the losses due to seismic energy radiation?

As the lumped parameter model does not consider coupling of
the fluid-cavity system to the rock, an issue that should be
addressed is whether the oscillator losses due to radiation of seis-
mic energy are significant or not. Chouet (1985) has considered
this problem in a similar context, where a fluid-filled cylinder of
length h and radius R is subject to an oscillatory fluid motion.
The coefficient that expresses the partitioning of energy into elastic
and hydraulic motions can be approximated for the disk-shaped
end of the cylinder as



Fig. 8. Diagrams showing the variation of synthetic reduced displacement (sDR) as a
function of distance from the source. Calculations assume a cavity with R ¼ 3 m,
L ¼ 0:5 m, wave periods 0.4 s, 0.6 s, 0.8 s and a source depth of (a) 100 m, (b) 200 m,
(c) 300 m.
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gdisk ¼ 0:3
xpR
a

ð14Þ

where x ¼ 2pf and a is the compressional wave speed. The parti-
tioning coefficient for the cylinder itself was approximated by

gcyl ¼ 0:08hR2ðx
b
Þ

3
ð15Þ

where bð¼ 1500 m=s) is shear wave speed and it is assumed that the
rock is a Poisson solid with a=b ¼

ffiffiffi
3
p

. For the cavity size of
h ¼ 0:5 m and R ¼ 3 m and the frequency range observed at Galeras
(1–4 Hz) the coefficient gdisk takes values between 0.006 and 0.027
while gcyl is far smaller in the order of 10�6. It can be concluded that
only a small fraction of the hydraulic motion is converted into seis-
mic energy radiation for this frequency range. One criticism against
such calculations would be that the cavity geometry at Galeras may
be quite different from cylindrical. Fujita and Ida (2003) have for-
mulated the normal mode patterns for three simple geometrical
shapes (plane, cylinder and sphere) and tried to distinguish the
shape of volcanic fluid systems at different volcanoes based on
these patterns. Specifically, at Galeras the authors concluded that
the normal mode pattern suggests a cylindrical shaped source.

5.2. Is the cavity model consistent with source inversion results?

Even though (to the best knowledge of the author) there is no
published study dealing with source inversion of the Galeras tor-
nillos, it would still be interesting to compare the physical model
introduced here with such results obtained for tornillos from
Kusatsu-Shirane volcano in Japan. Nakano et al. (2003) investi-
gated the source process of these events by waveform inversion
of their effective excitation functions (i.e. the apparent excitation
observed at individual receivers). In this way, the authors were
able to determine the source-time functions of the six moment
tensor elements, as well as three single force components
(Fx; Fy; Fz) that were required in order to fit the waveform data.
The results point to a process where fluid movement occurs in a
nearly vertical direction and the source region is compressed and
dilated in cycles as indicated by the oscillatory nature of the time
history of the force components and the Mxx;Myy;Mzz moment ele-
ments. This kind of inversions have the limitation that they can
only determine the relative amplitudes of moment elements/force
components and cannot decipher the exact dimensions of the
source region. However, the source process described by Nakano
et al. (2003) is not in conflict with the proposed fluid-filled cavity
model where upward and downward forces also cause volumetric
changes to the cavity.

5.3. Is there a physical basis for the cavity model?

Stix et al. (1997) observed a positive correlation between the
length of quiescence from one eruption to the next and the number
of post-eruptive long-period events at Galeras. On the other hand,
they also observed a negative correlation for the post-eruptive
seismicity and the number of days over which the tornillo events
occurred. The authors finally concluded about the timescale of
gas exsolution and accumulation that:

These data suggest a model of progressive gas accumulation
over a period of months between eruptions, rather than rapid
pressurization and sealing of the conduit days to weeks before
an eruption. The appearance of monochromatic signals before
an eruption may therefore be an indication of a pressurization
threshold in the conduit being exceeded, rather than a manifes-
tation of the beginning of a pressurization episode.
This conclusion succinctly highlights two crucial points related to
the generation of tornillo events. First, that the gas accumulation
was not sudden or episodic but rather a slow and nearly steady pro-
cess. Second, that tornillo events might have been triggered after a
fluid pressure threshold was exceeded. Both of these points are con-
sistent with the self-oscillations of a fluid filling a cavity: the steady
accumulation of fluid leads to a critical point when excess fluid tries
to enter the cavity but is being repelled by the high pressure gradi-
ent. In this way the nearly steady input of fluid is transformed into
the oscillatory motion of the slug.

Tornillos are usually observed at volcanoes that possess
extensive hydrothermal systems, with prominent examples being
Vulcano in Italy and Tongariro in New Zealand. In these settings
the chemical and mechanical action of hydrothermal fluids to the
host rocks may cause the formation of cavities at shallow depths
and the steady accumulation of fluids within these cavities. The
precipitation of hydrothermal minerals in the cracks surrounding
these cavities may then lead to sealing and subsequent buildup
of fluid pressure (see for example Fournier (2006)) until a critical
value is reached and fluid oscillatory motion starts.
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Appendix A

It is possible to derive the nonlinear ordinary differential equa-
tion that governs the behavior of the fluid filled cavity oscillator by
considering Newton’s second law and all relevant forces in the
form

RF ¼ Fv þ Fr þ Fd ¼ m€x ðA1Þ

where Fv is the viscous damping force, Fr is the reaction force of the
fluid within the cavity and Fd is the nonlinear damping force
exerted on the fluid slug. Each of these forces are given by

Fv ¼ �2dm _x ðA2Þ

Fr ¼ �
qf c2s2

V

 !
x� 1

2
ðcþ 1Þ s

V

� �
x2 þ . . .

� �
ðA3Þ

Fd ¼
1
2
qf ns

� �
_x2 ¼ 1

2
qf ns

� �
_xj _xj ðA4Þ

Substituting these terms back to eq. A1 and dividing both parts by
the mass of the slug (m ¼ qf Les) also ignoring higher order contribu-
tions yields

�2d _x� c2s
LeV

x� 1
2
ðcþ 1Þ s

V

� �
x2

� �
þ n

2Le
_xj _xj ¼ €x ðA5Þ

After re-arranging the terms and recognizing that x2
0 ¼ c2s

LeV will yield
the final nonlinear ordinary differential equation which is

€xþ 2d _xþ n
2Le
j _xj _xþx2

0 x� 1
2
ðcþ 1Þ s

V

� �
x2

� �
¼ 0 ðA6Þ
Appendix B

The tornillo signals at station ‘Cráter-2’ have been recorded by a
vertical component Spregnether instrument with a natural period
of 1.0 s and damping coefficient 0.72 (critical) (Narváez et al.,
1997). The magnification of such an instrument can be calculated
by the relationship (e.g. Papazachos et al., 2005)

G ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� T2

T2
0

� �2
þ 4f2T2

T2
0

r ðB1Þ

where T is the period of the observed wave, T0 is the natural period
of the seismometer and f is its damping coefficient. For the
observed periods of tornillos at 0.8 s, 0.6 s, 0.4 s the value of G is
0.83, 0.93 and 0.98 respectively.
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